Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

被引:34
|
作者
Hamm, Charlie A. [1 ,2 ,3 ,4 ]
Baumgartner, Georg L. [1 ,2 ,3 ,5 ]
Biessmann, Felix [5 ]
Beetz, Nick L. [1 ,2 ,3 ,4 ]
Hartenstein, Alexander [1 ,2 ,3 ,6 ]
Savic, Lynn J. [1 ,2 ,3 ,4 ]
Frobose, Konrad [1 ,2 ,3 ]
Drager, Franziska [1 ,2 ,3 ]
Schallenberg, Simon [7 ,8 ,9 ]
Rudolph, Madhuri [1 ,2 ,3 ]
Baur, Alexander D. J. [1 ,2 ,3 ]
Hamm, Bernd [1 ,2 ,3 ]
Haas, Matthias [1 ,2 ,3 ]
Hofbauer, Sebastian [1 ,2 ,3 ]
Cash, Hannes [10 ,11 ]
Penzkofer, Tobias [1 ,2 ,3 ,4 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Campus Virchow Klinikum, Augustenburgerpl 1, D-13353 Berlin, Germany
[2] Humboldt Univ, Freie Univ Berlin, Campus Virchow Klinikum, Augustenburgerpl 1, D-13353 Berlin, Germany
[3] Berlin Inst Hlth, Campus Virchow Klinikum, Augustenburgerpl 1, Berlin, 13353, Germany
[4] Berlin Inst Hlth BIH, Berlin, Germany
[5] Berliner Hsch Tech BHT, Fac Informat & Media 4, Einstein Ctr Digital Future, Berlin, Germany
[6] Bayer AG, Med Affairs & Pharmacovigilance, Integrated Evidence Generat & Business Innovat, Berlin, Germany
[7] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[8] Humboldt Univ, Freie Univ Berlin, Berlin, Germany
[9] Berlin Inst Hlth, Berlin, Germany
[10] Otto von Guericke Univ, Dept Urol, Magdeburg, Germany
[11] PROURO, Berlin, Germany
关键词
COMPUTER-AIDED DIAGNOSIS; ACCURACY; SYSTEM;
D O I
10.1148/radiol.222276
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose: To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods: This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score >_ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion-and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney Uand exact Fisher-Yates test. Results: Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of >_ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion: The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI
    Bertelli, Elena
    Mercatelli, Laura
    Marzi, Chiara
    Pachetti, Eva
    Baccini, Michela
    Barucci, Andrea
    Colantonio, Sara
    Gherardini, Luca
    Lattavo, Lorenzo
    Pascali, Maria Antonietta
    Agostini, Simone
    Miele, Vittorio
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [42] Explainable AI Model for COVID-19 Diagnosis Through Joint Deep Learning and Radiomics
    Yang, D.
    Ren, G.
    Ying, M.
    Cai, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [43] Developing an explainable diagnosis system utilizing deep learning model: a case study of spontaneous pneumothorax
    Lin, Frank Cheau-Feng
    Wei, Chia-Jung
    Bai, Zhe-Rui
    Chang, Chi-Chang
    Chiu, Ming-Chuan
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (14):
  • [44] Development and Validation of a Deep Learning Model Based on MRI and Clinical Characteristics to Predict Risk of Prostate Cancer Progression
    Roest, Christian
    Kwee, Thomas C.
    de Jong, Igle J.
    Schoots, Ivo G.
    van Leeuwen, Pim
    Heijmink, Stijn W. T. P. J.
    van der Poel, Henk G.
    Fransen, Stefan J.
    Saha, Anindo
    Huisman, Henkjan
    Yakar, Derya
    RADIOLOGY-IMAGING CANCER, 2025, 7 (01):
  • [45] An Explainable Deep Learning Approach for Oral Cancer Detection
    Babu, P. Ashok
    Rai, Anjani Kumar
    Ramesh, Janjhyam Venkata Naga
    Nithyasri, A.
    Sangeetha, S.
    Kshirsagar, Pravin R.
    Rajendran, A.
    Rajaram, A.
    Dilipkumar, S.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (03) : 1837 - 1848
  • [46] An Explainable Deep Learning Approach for Oral Cancer Detection
    P. Ashok Babu
    Anjani Kumar Rai
    Janjhyam Venkata Naga Ramesh
    A. Nithyasri
    S. Sangeetha
    Pravin R. Kshirsagar
    A. Rajendran
    A. Rajaram
    S. Dilipkumar
    Journal of Electrical Engineering & Technology, 2024, 19 : 1837 - 1848
  • [47] Active Appearance Model and Deep Learning for More Accurate Prostate Segmentation on MRI
    Cheng, Ruida
    Roth, Holger R.
    Lu, Le
    Wang, Shijun
    Turkbey, Baris
    Gandler, William
    McCreedy, Evan S.
    Agarwal, Harsh K.
    Choyke, Peter
    Summers, Ronald M.
    McAuliffe, Matthew J.
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [48] An evolutionary explainable deep learning approach for Alzheimer's MRI classification
    Shojaei, Shakila
    Abadeh, Mohammad Saniee
    Momeni, Zahra
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 220
  • [49] An Explainable Deep Learning Approach for Oral Cancer Detection
    Babu, P. Ashok
    Rai, Anjani Kumar
    Ramesh, Janjhyam Venkata Naga
    Nithyasri, A.
    Sangeetha, S.
    Kshirsagar, Pravin R.
    Rajendran, A.
    Rajaram, A.
    Dilipkumar, S.
    Journal of Electrical Engineering and Technology, 2024, 19 (03): : 1837 - 1848
  • [50] An eXplainable deep learning model for multi-modal MRI grading of IDH-mutant astrocytomas
    Ayaz, Hamail
    Oladimeji, Oladosu
    Mcloughlin, Ian
    Tormey, David
    Booth, Thomas C.
    Unnikrishnan, Saritha
    RESULTS IN ENGINEERING, 2024, 24