Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI

被引:34
|
作者
Hamm, Charlie A. [1 ,2 ,3 ,4 ]
Baumgartner, Georg L. [1 ,2 ,3 ,5 ]
Biessmann, Felix [5 ]
Beetz, Nick L. [1 ,2 ,3 ,4 ]
Hartenstein, Alexander [1 ,2 ,3 ,6 ]
Savic, Lynn J. [1 ,2 ,3 ,4 ]
Frobose, Konrad [1 ,2 ,3 ]
Drager, Franziska [1 ,2 ,3 ]
Schallenberg, Simon [7 ,8 ,9 ]
Rudolph, Madhuri [1 ,2 ,3 ]
Baur, Alexander D. J. [1 ,2 ,3 ]
Hamm, Bernd [1 ,2 ,3 ]
Haas, Matthias [1 ,2 ,3 ]
Hofbauer, Sebastian [1 ,2 ,3 ]
Cash, Hannes [10 ,11 ]
Penzkofer, Tobias [1 ,2 ,3 ,4 ]
机构
[1] Charite Univ Med Berlin, Dept Radiol, Campus Virchow Klinikum, Augustenburgerpl 1, D-13353 Berlin, Germany
[2] Humboldt Univ, Freie Univ Berlin, Campus Virchow Klinikum, Augustenburgerpl 1, D-13353 Berlin, Germany
[3] Berlin Inst Hlth, Campus Virchow Klinikum, Augustenburgerpl 1, Berlin, 13353, Germany
[4] Berlin Inst Hlth BIH, Berlin, Germany
[5] Berliner Hsch Tech BHT, Fac Informat & Media 4, Einstein Ctr Digital Future, Berlin, Germany
[6] Bayer AG, Med Affairs & Pharmacovigilance, Integrated Evidence Generat & Business Innovat, Berlin, Germany
[7] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[8] Humboldt Univ, Freie Univ Berlin, Berlin, Germany
[9] Berlin Inst Hlth, Berlin, Germany
[10] Otto von Guericke Univ, Dept Urol, Magdeburg, Germany
[11] PROURO, Berlin, Germany
关键词
COMPUTER-AIDED DIAGNOSIS; ACCURACY; SYSTEM;
D O I
10.1148/radiol.222276
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose: To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification. Materials and Methods: This retrospective study included consecutive patients with histopathologic analysis-proven prostatic lesions who underwent biparametric MRI and biopsy between January 2012 and December 2017. After image annotation by two radiologists, a deep learning model was trained to detect the index lesion; classify PCa, clinically significant PCa (Gleason score >_ 7), and benign lesions (eg, prostatitis); and justify classifications using PI-RADS features. Lesion-and patient-based performance were assessed using fivefold cross validation and areas under the receiver operating characteristic curve. Clinical feasibility was tested in a multireader study and by using the external PROSTATEx data set. Statistical evaluation of the multireader study included Mann-Whitney Uand exact Fisher-Yates test. Results: Overall, 1224 men (median age, 67 years; IQR, 62-73 years) had 3260 prostatic lesions (372 lesions with Gleason score of 6; 743 lesions with Gleason score of >_ 7; 2145 benign lesions). XAI reliably detected clinically significant PCa in internal (area under the receiver operating characteristic curve, 0.89) and external test sets (area under the receiver operating characteristic curve, 0.87) with a sensitivity of 93% (95% CI: 87, 98) and an average of one false-positive finding per patient. Accuracy of the visual and textual explanations of XAI classifications was 80% (1080 of 1352), confirmed by experts. XAI-assisted readings improved the confidence (4.1 vs 3.4 on a five-point Likert scale; P = .007) of nonexperts in assessing PI-RADS 3 lesions, reducing reading time by 58 seconds (P = .009). Conclusion: The explainable AI model reliably detected and classified clinically significant prostate cancer and improved the confidence and reading time of nonexperts while providing visual and textual explanations using well-established imaging features.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multicenter Evaluation of a Weakly Supervised Deep Learning Model for Lymph Node Diagnosis in Rectal Cancer at MRI
    Xia, Wei
    Li, Dandan
    He, Wenguang
    Pickhardt, Perry J.
    Jian, Junming
    Zhang, Rui
    Zhang, Junjie
    Song, Ruirui
    Tong, Tong
    Yang, Xiaotang
    Gao, Xin
    Cui, Yanfen
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (02)
  • [32] Explainable deep learning for diabetes diagnosis with DeepNetX2
    Tanim, Sharia Arfin
    Aurnob, Al Rafi
    Shrestha, Tahmid Enam
    Emon, M. D. Rokon Islam
    Mridha, M. F.
    Miah, Md Saef Ullah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [33] An MRI Deep Learning Model Predicts Outcome in Rectal Cancer
    Jiang, Xiaofeng
    Zhao, Hengyu
    Saldanha, Oliver Lester
    Nebelung, Sven
    Kuhl, Christiane
    Amygdalos, Iakovos
    Lang, Sven Arke
    Wu, Xiaojian
    Meng, Xiaochun
    Truhn, Daniel
    Kather, Jakob Nikolas
    Ke, Jia
    RADIOLOGY, 2023, 307 (05)
  • [34] DEEP LEARNING CLASSIFICATION OF PROSTATE MRI SEQUENCES
    Bhatter, P.
    Bardis, M.
    Chahine, C.
    Ushinsky, A.
    Fujimoto, D.
    Grant, W. A.
    Chang, P.
    Houshyar, R.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2020, 68 : A134 - A135
  • [35] Weakly-supervised deep learning model for prostate cancer diagnosis and Gleason grading of histopathology images
    Behzadi, Mohammad Mahdi
    Madani, Mohammad
    Wang, Hanzhang
    Bai, Jun
    Bhardwaj, Ankit
    Tarakanova, Anna
    Yamase, Harold
    Nam, Ga Hie
    Nabavi, Sheida
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [36] Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning
    Hossain, S.
    Hossain, S.
    Avesta, A.
    Nene, A.
    Maresca, R.
    Aneja, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E393 - E393
  • [37] Detection of prostate cancer extracapsular extension with MRI using deep learning methods
    Saikali, S.
    Khosravi, P.
    Boger, M.
    Jaber, A. R.
    Moschovas, Covas M.
    Rogers, T.
    Reddy, S.
    Gamal, A.
    Venkataraman, S.
    Patel, E.
    Patel, V.
    EUROPEAN UROLOGY, 2024, 85 : S850 - S850
  • [38] DETECTION OF PROSTATE CANCER EXTRACAPSULAR EXTENSION WITH MRI USING DEEP LEARNING METHODS
    Saikali, Shady
    Khosravi, Pegah
    Gamal, Ahmad
    Jaber, Abdelrahman
    Moschovas, Marcio Covas
    Rogers, Travis
    Patel, Evan
    Reddy, Sumeet
    Venkataraman, Srirama
    Patel, Vipul
    JOURNAL OF UROLOGY, 2024, 211 (05): : E105 - E105
  • [39] IMPROVING PROSTATE CANCER DETECTION ON MRI WITH DEEP LEARNING, CLINICAL VARIABLES, AND RADIOMICS
    Saunders, Sara
    Li, Xinran
    Vesal, Sulaiman
    Bhattacharya, Indrani
    Soerensen, Simon J. C.
    Fan, Richard E.
    Rusu, Mirabela
    Sonn, Geoffrey A.
    JOURNAL OF UROLOGY, 2023, 209 : E665 - E665
  • [40] Prostate Cancer Staging and Radiation Treatment Planning Using Deep Learning on MRI
    Han, B.
    Yuan, Y.
    Hancock, S. L.
    Bagshaw, H. P.
    Buyyounouski, M. K.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S102 - S102