Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation

被引:1
|
作者
Morozov, Kirill E. [1 ]
Morozov, Albert D. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Pr Gagarina 23, Nizhnii Novgorod 603950, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2024年 / 29卷 / 01期
基金
俄罗斯科学基金会;
关键词
nearly Hamiltonian system; degenerate resonance; quasi-periodic perturbation; parametric perturbation; averaging; DEGENERATE RESONANCES; RECONNECTION; MAPS;
D O I
10.1134/S1560354724010052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonconservative quasi-periodic (with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} frequencies) perturbations of two-dimensional Hamiltonian systems with nonmonotonic rotation. It is assumed that the perturbation contains the so-called parametric terms. The behavior of solutions in the vicinity of degenerate resonances is described. Conditions for the existence of resonance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+1)$$\end{document}-dimensional invariant tori for which there are no generating ones in the unperturbed system are found. The class of perturbations for which such tori can exist is indicated. The results are applied to the asymmetric Duffing equation under a parametric quasi-periodic perturbation.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 50 条
  • [41] QUASI-PERIODIC STATES OF AN OSCILLATORY HAMILTONIAN
    YOUNG, RH
    DEAL, WJ
    KESTNER, NR
    MOLECULAR PHYSICS, 1969, 17 (04) : 369 - &
  • [42] On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point
    Xu, Junxiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (01) : 551 - 571
  • [43] Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations
    Anishchenko, VS
    Nikolaev, SM
    TECHNICAL PHYSICS LETTERS, 2005, 31 (10) : 853 - 855
  • [44] Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations
    V. S. Anishchenko
    S. M. Nikolaev
    Technical Physics Letters, 2005, 31 : 853 - 855
  • [45] Two-Dimensional Quasi-Periodic Diffraction Properties of the Scalar and Vector Optical Fields
    Pan, Yue
    Sun, Xue-Feng
    Zhang, Guang-Bo
    Li, Qing-Lu
    Kong, Ya-Ning
    Zhao, Tian-Fei
    Gao, Xu-Zhen
    PHOTONICS, 2023, 10 (09)
  • [46] Generation of periodic and quasi-periodic two-dimensional non-diffractive beams with inhomogeneous polarization
    Alonso, Maria Concepcion
    Ruiz, Ulises
    De-la-Llave, David Sanchz
    Arrizon, Victor
    APPLIED OPTICS, 2022, 61 (04) : 1017 - 1021
  • [47] Hopf bifurcations to quasi-periodic solutions for the two-dimensional plane Poiseuille flow
    Casas, Pablo S.
    Jorba, Angel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 2864 - 2882
  • [48] A METHOD FOR THE STUDY OF WHISKERED QUASI-PERIODIC AND ALMOST-PERIODIC SOLUTIONS IN FINITE AND INFINITE DIMENSIONAL HAMILTONIAN SYSTEMS
    Fontich, Ernest
    de la Llave, Rafael
    Sire, Yannick
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2009, 16 : 9 - 22
  • [49] CHAOTIC MOTIONS NEAR HOMOCLINIC MANIFOLDS AND RESONANT TORI IN QUASI-PERIODIC PERTURBATIONS OF PLANAR HAMILTONIAN-SYSTEMS
    YAGASAKI, K
    PHYSICA D, 1993, 69 (3-4): : 232 - 269
  • [50] On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations
    Dept. de Matemat. Apl. i Anaslisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
    不详
    Journal of Nonlinear Science, 7 (05): : 427 - 473