Quasi-Periodic Parametric Perturbations of Two-Dimensional Hamiltonian Systems with Nonmonotonic Rotation

被引:1
|
作者
Morozov, Kirill E. [1 ]
Morozov, Albert D. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Pr Gagarina 23, Nizhnii Novgorod 603950, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2024年 / 29卷 / 01期
基金
俄罗斯科学基金会;
关键词
nearly Hamiltonian system; degenerate resonance; quasi-periodic perturbation; parametric perturbation; averaging; DEGENERATE RESONANCES; RECONNECTION; MAPS;
D O I
10.1134/S1560354724010052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonconservative quasi-periodic (with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} frequencies) perturbations of two-dimensional Hamiltonian systems with nonmonotonic rotation. It is assumed that the perturbation contains the so-called parametric terms. The behavior of solutions in the vicinity of degenerate resonances is described. Conditions for the existence of resonance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+1)$$\end{document}-dimensional invariant tori for which there are no generating ones in the unperturbed system are found. The class of perturbations for which such tori can exist is indicated. The results are applied to the asymmetric Duffing equation under a parametric quasi-periodic perturbation.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 50 条