Twitter Sentiment Geographical Index Dataset

被引:3
|
作者
Chai, Yuchen [1 ]
Kakkar, Devika [2 ]
Palacios, Juan [1 ]
Zheng, Siqi [1 ]
机构
[1] MIT, Sustainable Urbanizat Lab, Cambridge, MA 02139 USA
[2] Harvard Univ, Ctr Geog Anal, Cambridge, MA 02138 USA
关键词
HEALTH; INCOME; WORK;
D O I
10.1038/s41597-023-02572-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Promoting well-being is one of the key targets of the Sustainable Development Goals at the United Nations. Many national and city governments worldwide are incorporating Subjective Well-Being (SWB) indicators into their agenda, to complement traditional objective development and economic metrics. In this study, we introduce the Twitter Sentiment Geographical Index (TSGI), a location-specific expressed sentiment database with SWB implications, derived through deep-learning-based natural language processing techniques applied to 4.3 billion geotagged tweets worldwide since 2019. Our open-source TSGI database represents the most extensive Twitter sentiment resource to date, encompassing multilingual sentiment measurements across 164 countries at the admin-2 (county/city) level and daily frequency. Based on the TSGI database, we have created a web platform allowing researchers to access the sentiment indices of selected regions in the given time period.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Sentiment analysis of multimodal twitter data
    Akshi Kumar
    Geetanjali Garg
    Multimedia Tools and Applications, 2019, 78 : 24103 - 24119
  • [42] Exploring Sentiment Analysis on Twitter Data
    Venugopalan, Manju
    Gupta, Deepa
    2015 EIGHTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2015, : 241 - 247
  • [43] Automatic Sentiment Analysis of Twitter Messages
    Lima, Ana C. E. S.
    de Castro, Leandro N.
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 52 - 57
  • [44] Sentiment Analysis of Twitter in Tourism Destinations
    Perez Cabanero, Carmen
    Bigne, Enrique
    Ruiz, Carla
    Carlos Cuenca, Antonio
    3RD INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH METHODS AND ANALYTICS (CARMA 2020), 2020, : 181 - 189
  • [45] Interpreting the Public Sentiment Variations on Twitter
    Tan, Shulong
    Li, Yang
    Sun, Huan
    Guan, Ziyu
    Yan, Xifeng
    Bu, Jiajun
    Chen, Chun
    He, Xiaofei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (05) : 1158 - 1170
  • [46] Feature Expansion for Sentiment Analysis in Twitter
    Setiawan, Erwin B.
    Widyantoro, Dwi H.
    Surendro, Kridanto
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 509 - 513
  • [47] SASM: A Tool for Sentiment Analysis on Twitter
    Onifade, O. F. W.
    Malik, M. A.
    2015 2ND WORLD SYMPOSIUM ON WEB APPLICATIONS AND NETWORKING (WSWAN), 2015,
  • [48] Multidimensional sentiment analysis on twitter with semiotics
    Chauhan D.
    Sutaria K.
    International Journal of Information Technology, 2019, 11 (4) : 677 - 682
  • [49] Ensemble model for Twitter Sentiment Analysis
    Dedhia, Chintan
    Ramteke, Jyoti
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2017), 2017, : 346 - 350
  • [50] Twitter Sentiment and Bitcoin Price Is there a connection?
    Baroiu, Alexandru-Costin
    Dobrita , Gabbriela
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 258 - 262