Twitter Sentiment Geographical Index Dataset

被引:3
|
作者
Chai, Yuchen [1 ]
Kakkar, Devika [2 ]
Palacios, Juan [1 ]
Zheng, Siqi [1 ]
机构
[1] MIT, Sustainable Urbanizat Lab, Cambridge, MA 02139 USA
[2] Harvard Univ, Ctr Geog Anal, Cambridge, MA 02138 USA
关键词
HEALTH; INCOME; WORK;
D O I
10.1038/s41597-023-02572-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Promoting well-being is one of the key targets of the Sustainable Development Goals at the United Nations. Many national and city governments worldwide are incorporating Subjective Well-Being (SWB) indicators into their agenda, to complement traditional objective development and economic metrics. In this study, we introduce the Twitter Sentiment Geographical Index (TSGI), a location-specific expressed sentiment database with SWB implications, derived through deep-learning-based natural language processing techniques applied to 4.3 billion geotagged tweets worldwide since 2019. Our open-source TSGI database represents the most extensive Twitter sentiment resource to date, encompassing multilingual sentiment measurements across 164 countries at the admin-2 (county/city) level and daily frequency. Based on the TSGI database, we have created a web platform allowing researchers to access the sentiment indices of selected regions in the given time period.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Exploring the sentiment of entrepreneurs on Twitter
    Waters, James
    Nicolaou, Nicos
    Stefanidis, Dimosthenis
    Efstathiades, Hariton
    Pallis, George
    Dikaiakos, Marios
    PLOS ONE, 2021, 16 (07):
  • [22] Explaining Sentiment Spikes in Twitter
    Giachanou, Anastasia
    Mele, Ida
    Crestani, Fabio
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 2263 - 2268
  • [23] Sentiment Analysis of Twitter Data
    Desai, Radhi D.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 114 - 117
  • [24] A SURVEY OF TWITTER SENTIMENT ANALYSIS
    Anuprathibha, T.
    Selvib, C. S. Kanimozhi
    IIOAB JOURNAL, 2016, 7 (09) : 374 - 378
  • [25] Sentiment Analysis of Twitter Data
    Wang, Yili
    Guo, Jiaxuan
    Yuan, Chengsheng
    Li, Baozhu
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [26] Sentiment Analysis of Twitter Data
    El Rahman, Sahar A.
    AlOtaibi, Feddah Alhumaidi
    AlShehri, Wejdan Abdullah
    2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), 2019, : 336 - 339
  • [27] Twitter's daily happiness sentiment, economic policy uncertainty, and stock index fluctuations
    Chen, Wen-Yi
    Chen, Mei-Ping
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2022, 62
  • [28] The climate change Twitter dataset
    Effrosynidis, Dimitrios
    Karasakalidis, Alexandros, I
    Sylaios, Georgios
    Arampatzis, Avi
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [29] Dataset on dynamics of Coronavirus on Twitter
    Aguilar-Gallegos, Norman
    Elizabeth Romero-Garcia, Leticia
    Genaro Martinez-Gonzalez, Enrique
    Ivan Garcia-Sanchez, Edgar
    Aguilar-Avila, Jorge
    DATA IN BRIEF, 2020, 30
  • [30] NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis
    Muhammad, Shamsuddeen Hassan
    Adelani, David Ifeoluwa
    Ruder, Sebastian
    Ahmad, Ibrahim Sa'id
    Abdulmumin, Idris
    Bello, Bello Shehu
    Choudhury, Monojit
    Emezue, Chris Chinenye
    Abdullahi, Saheed Salahudeen
    Aremu, Anuoluwapo
    Jorge, Alipio
    Brazdil, Pavel
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 590 - 602