A dual-view network for fault diagnosis in rotating machinery using unbalanced data

被引:7
|
作者
Chen, Zixu [1 ,2 ]
Yu, Wennian [1 ,2 ]
Kong, Chengcheng [1 ,2 ]
Zeng, Qiang [2 ]
Wang, Liming [2 ]
Shao, Yimin [2 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; unbalanced data; multi-sensor interactive graph; dual-view network;
D O I
10.1088/1361-6501/ace9f0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-driven intelligent methods have demonstrated their effectiveness in the area of fault diagnosis. However, most existing studies are based on the assumption that the distributions of normal and faulty samples are balanced during the diagnostic process. This assumption significantly decreases the application range of a diagnostic model as the samples in most real-world scenarios are highly unbalanced. To cope with the limitations caused by unbalanced data, this paper proposed an original dual-view network (DVN). Firstly, an interactive graph modeling strategy is introduced for relationship information modeling of multi-sensor data. Meanwhile, the graph convolution operation is used as the baseline for feature extraction of the constructed interactive graph to mine for fault representations. Secondly, an original dual-view classifier consisting of a binary classifier and a multi-class classifier is proposed, which divides fault diagnosis into two stages. Specifically, in the first stage, the binary classifier performs the binary inference from the view of fault detection. In the second stage, the multi-class classifier performs the full-state inference from the view of fine-grained fault classification. Then, based on the dual-view classifier, a weight activation module is designed to alleviate training bias toward majority classes by sample-level re-weighting. Finally, the diagnosis results can be obtained according to the output of the multi-class classifier. Fault diagnosis experiments using two different datasets with varying data unbalance ratios were conducted to validate the effectiveness of the proposed method. The superiority of the proposed DVN is verified through comparisons with state-of-the-art methods. The effectiveness of the DVN is further validated through ablation studies with some ablative models. The DVN code is available at: https:// github.com/CQU-ZixuChen/DualViewNetwork.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Rotating machinery fault identification method based on the cloud model confronting unbalanced data
    Zhao N.
    Zhao R.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (22): : 70 - 77
  • [32] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [33] Fault detection and diagnosis in rotating machinery
    Loparo, KA
    Afshari, N
    Abdel-Magied, M
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2986 - 2991
  • [34] The Study of Fault Diagnosis in Rotating Machinery
    Othman, Nor Azlan
    Damanhuri, Nor Salwa
    Kadirkamanathan, Visakan
    CSPA: 2009 5TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, 2009, : 69 - 74
  • [35] Fault Diagnosis Method for On-board Equipment of CTCS Based on Dual-view Fault Feature Extraction
    Peng C.
    Shangguan W.
    Xing Y.
    Cai B.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (11): : 63 - 70
  • [36] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [37] Fault Diagnosis Network for Rotating Machinery Based on Multiscale Feature Fusion
    Jiang, Xin
    Qian, Pengjiang
    Wang, Chuang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14863 : 44 - 55
  • [38] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310
  • [39] ART-KOHONEN neural network for fault diagnosis of rotating machinery
    Yang, BS
    Han, T
    An, JL
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (03) : 645 - 657
  • [40] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2022, 2022