ART-KOHONEN neural network for fault diagnosis of rotating machinery

被引:145
|
作者
Yang, BS [1 ]
Han, T [1 ]
An, JL [1 ]
机构
[1] Pukyong Natl Univ, Sch Mech Engn, Pusan 608739, South Korea
关键词
artificial neural network; fault diagnosis; rotating machinery; vibration signal; feature extraction;
D O I
10.1016/S0888-3270(03)00073-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN), is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for learning. However, the 'off-line' NNs are unable to adapt autonomously and must be retrained by applying the complete dataset including the new data. The ART networks can solve the plasticity-stability dilemma. In other words, they are able to carry out 'on-line' training without forgetting previously trained patterns (stable training); it can recode previously trained categories adaptive to changes in the environment and is self-organising. ART-KNN also holds these characteristics, and more suitable than original ART for fault diagnosis of machinery. In order to test the proposed network, the vibration signal is selected as raw inputs due to its simplicity, accuracy and efficiency. The results of the experiments confirm the performance of the proposed network through comparing with other NNs, such as the self-organising feature maps (SOFMs), learning vector quantisation (LVQ) and radial basis function (RBF) NNs under the same conditions. The diagnosis success rate for the ART-Kohonen network was 100%, while the rates of SOFM, LVQ and RBF networks were 93%, 93% and 89%, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 50 条
  • [1] ART Kohonen neural network for fault diagnosis of rotating machinery
    Yang, BS
    Han, T
    An, JL
    Kim, DJ
    ELEVENTH WORLD CONGRESS IN MECHANISM AND MACHINE SCIENCE, VOLS 1-5, PROCEEDINGS, 2004, : 2085 - 2090
  • [2] Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis
    Yang, BS
    Han, T
    Kim, YS
    EXPERT SYSTEMS WITH APPLICATIONS, 2004, 26 (03) : 387 - 395
  • [3] Fault diagnosis of rotating machinery based on wavelet packets-ART2 neural network
    Liu, HL
    Wang, BB
    Wavelet Analysis and Active Media Technology Vols 1-3, 2005, : 1013 - 1018
  • [4] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [5] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310
  • [7] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [8] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [9] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2022, 2022
  • [10] Study on Fault Diagnosis of Rotating Machinery Based on Wavelet Neural Network
    Xu Yangwen
    ITCS: 2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, PROCEEDINGS, VOL 2, PROCEEDINGS, 2009, : 221 - 224