ART-KOHONEN neural network for fault diagnosis of rotating machinery

被引:145
|
作者
Yang, BS [1 ]
Han, T [1 ]
An, JL [1 ]
机构
[1] Pukyong Natl Univ, Sch Mech Engn, Pusan 608739, South Korea
关键词
artificial neural network; fault diagnosis; rotating machinery; vibration signal; feature extraction;
D O I
10.1016/S0888-3270(03)00073-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN), is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for learning. However, the 'off-line' NNs are unable to adapt autonomously and must be retrained by applying the complete dataset including the new data. The ART networks can solve the plasticity-stability dilemma. In other words, they are able to carry out 'on-line' training without forgetting previously trained patterns (stable training); it can recode previously trained categories adaptive to changes in the environment and is self-organising. ART-KNN also holds these characteristics, and more suitable than original ART for fault diagnosis of machinery. In order to test the proposed network, the vibration signal is selected as raw inputs due to its simplicity, accuracy and efficiency. The results of the experiments confirm the performance of the proposed network through comparing with other NNs, such as the self-organising feature maps (SOFMs), learning vector quantisation (LVQ) and radial basis function (RBF) NNs under the same conditions. The diagnosis success rate for the ART-Kohonen network was 100%, while the rates of SOFM, LVQ and RBF networks were 93%, 93% and 89%, respectively. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 50 条
  • [21] MPNet: A lightweight fault diagnosis network for rotating machinery
    Liu, Yi
    Chen, Ying
    Li, Xianguo
    Zhou, Xinyi
    Wu, Dongdong
    MEASUREMENT, 2025, 239
  • [22] Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network
    Ru-qiang Li
    Jin Chen
    Xing Wu
    Applied Mathematics and Mechanics, 2006, 27 : 99 - 108
  • [23] Multi-scale deep neural network for fault diagnosis method of rotating machinery
    Xie, Yining
    Liu, Wang
    Liu, Xiu
    Chen, Deyun
    Guan, Guohui
    He, Yongjun
    FERROELECTRICS, 2023, 602 (01) : 215 - 230
  • [24] FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK
    李如强
    陈进
    伍星
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (01) : 99 - 108
  • [25] Fault diagnosis based on SPBO-SDAE and transformer neural network for rotating machinery
    Du, Xianjun
    Jia, Liangliang
    Ul Haq, Izaz
    MEASUREMENT, 2022, 188
  • [26] Intelligent fault diagnosis and visual interpretability of rotating machinery based on residual neural network
    Yu, Shihang
    Wang, Min
    Pang, Shanchen
    Song, Limei
    Qiao, Sibo
    MEASUREMENT, 2022, 196
  • [27] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [28] Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery
    Zou, Li
    Lam, Heung Fai
    Hu, Jun
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (04): : 2193 - 2213
  • [29] Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
    Cai, Yuxiang
    Wang, Zhenya
    Yao, Ligang
    Lin, Tangxin
    Zhang, Jun
    Computational Intelligence and Neuroscience, 2022, 2022
  • [30] Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging
    Yongbo LI
    Xiaoqiang DU
    Fangyi WAN
    Xianzhi WANG
    Huangchao YU
    Chinese Journal of Aeronautics , 2020, (02) : 427 - 438