Stochastic Wasserstein Hamiltonian Flows

被引:5
|
作者
Cui, Jianbo [1 ]
Liu, Shu [2 ]
Zhou, Haomin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] UCLA, Dept Math, Los Angeles, CA 90095 USA
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Stochastic Hamiltonian flow; Density manifold; Wong-Zakai approximation; SCHRODINGER-EQUATION; OPTIMAL TRANSPORT; APPROXIMATIONS; CONVERGENCE; DYNAMICS; SPACE;
D O I
10.1007/s10884-023-10264-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L-2-Wasserstein metric tensor, via the Wong-Zakai approximation. We begin our investigation by showing that the stochastic Euler-Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrodinger equation, Schrodinger equation with random dispersion, and Schrodinger bridge problem with common noise.
引用
收藏
页码:3885 / 3921
页数:37
相关论文
共 50 条
  • [41] Calculation of cantori for Hamiltonian flows
    Hudson, S. R.
    PHYSICAL REVIEW E, 2006, 74 (05)
  • [42] An estimate for the entropy of Hamiltonian flows
    Chittaro, F. C.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (01) : 55 - 67
  • [43] Renormalization of multidimensional Hamiltonian flows
    Khanin, Kostya
    Dias, Joao Lopes
    Marklof, Jens
    NONLINEARITY, 2006, 19 (12) : 2727 - 2753
  • [44] Jacobian pairs and Hamiltonian flows
    Campbell, LA
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 115 (01) : 15 - 26
  • [45] GRADIENT FLOWS FOR PROBABILISTIC FRAME POTENTIALS IN THE WASSERSTEIN SPACE
    Wickman, Clare
    Okoudjou, Kasso A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 2324 - 2346
  • [46] The back-and-forth method for Wasserstein gradient flows
    Jacobs, Matt
    Lee, Wonjun
    Leger, Flavien
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [47] A variational finite volume scheme for Wasserstein gradient flows
    Clément Cancès
    Thomas O. Gallouët
    Gabriele Todeschi
    Numerische Mathematik, 2020, 146 : 437 - 480
  • [48] Wasserstein steepest descent flows of discrepancies with Riesz kernels
    Hertrich, Johannes
    Graef, Manuel
    Beinert, Robert
    Steidl, Gabriele
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [49] A variational finite volume scheme for Wasserstein gradient flows
    Cances, Clement
    Gallouet, Thomas O.
    Todeschi, Gabriele
    NUMERISCHE MATHEMATIK, 2020, 146 (03) : 437 - 480
  • [50] Neural Wasserstein Gradient Flows for Discrepancies with Riesz Kernels
    Altekrueger, Fabian
    Hertrich, Johannes
    Steidl, Gabriele
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202 : 664 - 690