Renormalization of multidimensional Hamiltonian flows

被引:14
|
作者
Khanin, Kostya
Dias, Joao Lopes
Marklof, Jens
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Tecn Lisboa, ISEG, Dept Matemat, P-1200781 Lisbon, Portugal
[3] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
D O I
10.1088/0951-7715/19/12/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a renormalization operator acting on the space of analytic Hamiltonians defined on T*T-d, d >= 2, based on the multidimensional continued fractions algorithm developed by the authors. We show convergence of orbits of the operator around integrable Hamiltonians satisfying a non-degeneracy condition. This in turn yields a new proof of a KAM-type theorem on the stability of diophantine invariant tori.
引用
收藏
页码:2727 / 2753
页数:27
相关论文
共 50 条
  • [1] Renormalization and Periodic Orbits¶for Hamiltonian Flows
    Juan J. Abad
    Hans Koch
    Communications in Mathematical Physics, 2000, 212 : 371 - 394
  • [2] Renormalization and periodic orbits for Hamiltonian flows
    Abad, JJ
    Koch, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) : 371 - 394
  • [4] Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian
    Tirrito, E.
    Rizzi, M.
    Sierra, G.
    Lewenstein, M.
    Bermudez, A.
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [5] Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori
    Gaidashev, DG
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (01) : 63 - 102
  • [6] Renormalization of Hamiltonian
    Alexanian, GG
    Moreno, EF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (11): : 1983 - 1988
  • [7] Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows
    Govin, M
    Chandre, C
    Jauslin, HR
    PHYSICAL REVIEW LETTERS, 1997, 79 (20) : 3881 - 3884
  • [8] Renormalization of Hamiltonian QCD
    Andrasi, A.
    Taylor, John C.
    ANNALS OF PHYSICS, 2009, 324 (10) : 2179 - 2195
  • [9] Renormalization of the Friedrichs Hamiltonian
    Derezinski, J
    Früboes, R
    REPORTS ON MATHEMATICAL PHYSICS, 2002, 50 (03) : 433 - 438
  • [10] MASS RENORMALIZATION IN A HAMILTONIAN APPROACH
    Weber, Axel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (25-26): : 4643 - 4670