Unsupervised domain adaptation-based crack segmentation using transformer network

被引:9
|
作者
Beyene, Daniel Asefa [1 ]
Tran, Dai Quoc [2 ]
Maru, Michael Bekele [3 ]
Kim, Taeheon [4 ]
Park, Solmoi [5 ]
Park, Seunghee [3 ]
机构
[1] Sungkyunkwan Univ, Dept Global Smart City, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Global Engn Inst Ultimate Soc, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Sch Civil Architectural & Environm Syst Engn, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, DNBio Pharm Inc, Res Ctr, Suwon 16419, South Korea
[5] Pukyong Natl Univ, Dept Civil Engn, Pusan 48513, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Crack detection; Unsupervised domain adaptation; Masked image consistency; Transformer network; Convolutional neural networks;
D O I
10.1016/j.jobe.2023.107889
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Surface cracks are a common structural defect. The intelligent inspection of these defects through computer vision and deep learning is of paramount importance for early maintenance and operation. Despite the remarkable success of supervised learning methods in detecting surface cracks, their performance heavily relies on the availability of extensive labeled datasets. Annotating a single image can be a time-consuming process, prone to human error. Moreover, these methods often struggle to generalize effectively to unseen datasets due to disparities between source and target images. To address this issue, unsupervised domain adaptation comes into play, as it aims to transfer knowledge learned from the labeled source domain to the unlabeled target domain. Consequently, we conducted an evaluation of a recent unsupervised domain adaptation model for semantic segmentation that incorporates masked image consistency into DAFormer, a state-of-the-art model with the ability to adapt to various datasets. To assess the model's performance, we employed three publicly available crack datasets, each containing background and crack classes. Our study has revealed that : (1) SegFormer, a transformer-based model, outperforms ConvNet-based models without utilizing adaptation knowledge, demonstrating superior generalizability to previously unseen data. (2) The unsupervised domain-adaptation model consistently outperforms the source model, resulting in a significant enhancement in the mean intersection over union of SegFormer's source-only approach by a remarkable 10% to 22%. With the exception of a single case, the relative performance of unsupervised domain adaptation compared to supervised training with labeled data exceeds 85%, underscoring its promising performance in crack segmentation. Consequently, our adopted method emerges as a viable alternative, particularly in scenarios where labeled data is scarce or prohibitively expensive.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Contrastive Adaptation Network for Unsupervised Domain Adaptation
    Kang, Guoliang
    Jiang, Lu
    Yang, Yi
    Hauptmann, Alexander G.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4888 - 4897
  • [22] A Multi-task Unsupervised Domain Adaptation Network for Medical Image Segmentation
    Shi, Yuejing
    Zhu, Fan
    Peng, Yan
    Ye, Zhen
    Zhou, Chaozheng
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND INTELLIGENT CONTROL (IPIC 2021), 2021, 11928
  • [23] Unsupervised domain adaptation network for medical image segmentation with generative adversarial networks
    Huang, Xiji
    Chen, Lingna
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 380 - 382
  • [24] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    TECHNOLOGIES, 2020, 8 (02)
  • [25] Unsupervised Camouflaged Object Segmentation as Domain Adaptation
    Zhang, Yi
    Wu, Chengyi
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4336 - 4346
  • [26] PANDA: A Polarized Attention Network for Enhanced Unsupervised Domain Adaptation in Semantic Segmentation
    Kao, Chiao-Wen
    Chang, Wei-Ling
    Lee, Chun-Chieh
    Fan, Kuo-Chin
    ELECTRONICS, 2024, 13 (21)
  • [27] Multibranch Unsupervised Domain Adaptation Network for Cross Multidomain Orchard Area Segmentation
    Liu, Ming
    Ren, Dong
    Sun, Hang
    Yang, Simon X.
    REMOTE SENSING, 2022, 14 (19)
  • [28] Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation
    Besic, Borna
    Gosala, Nikhil
    Cattaneo, Daniele
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3404 - 3411
  • [29] Rethinking unsupervised domain adaptation for semantic segmentation
    Wang, Zhijie
    Suganuma, Masanori
    Okatani, Takayuki
    PATTERN RECOGNITION LETTERS, 2024, 186 : 119 - 125
  • [30] Unsupervised Domain Adaptation for Referring Semantic Segmentation
    Shi, Haonan
    Pan, Wenwen
    Zhao, Zhou
    Zhang, Mingmin
    Wu, Fei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5807 - 5818