Unsupervised domain adaptation-based crack segmentation using transformer network

被引:9
|
作者
Beyene, Daniel Asefa [1 ]
Tran, Dai Quoc [2 ]
Maru, Michael Bekele [3 ]
Kim, Taeheon [4 ]
Park, Solmoi [5 ]
Park, Seunghee [3 ]
机构
[1] Sungkyunkwan Univ, Dept Global Smart City, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Global Engn Inst Ultimate Soc, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Sch Civil Architectural & Environm Syst Engn, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, DNBio Pharm Inc, Res Ctr, Suwon 16419, South Korea
[5] Pukyong Natl Univ, Dept Civil Engn, Pusan 48513, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Crack detection; Unsupervised domain adaptation; Masked image consistency; Transformer network; Convolutional neural networks;
D O I
10.1016/j.jobe.2023.107889
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Surface cracks are a common structural defect. The intelligent inspection of these defects through computer vision and deep learning is of paramount importance for early maintenance and operation. Despite the remarkable success of supervised learning methods in detecting surface cracks, their performance heavily relies on the availability of extensive labeled datasets. Annotating a single image can be a time-consuming process, prone to human error. Moreover, these methods often struggle to generalize effectively to unseen datasets due to disparities between source and target images. To address this issue, unsupervised domain adaptation comes into play, as it aims to transfer knowledge learned from the labeled source domain to the unlabeled target domain. Consequently, we conducted an evaluation of a recent unsupervised domain adaptation model for semantic segmentation that incorporates masked image consistency into DAFormer, a state-of-the-art model with the ability to adapt to various datasets. To assess the model's performance, we employed three publicly available crack datasets, each containing background and crack classes. Our study has revealed that : (1) SegFormer, a transformer-based model, outperforms ConvNet-based models without utilizing adaptation knowledge, demonstrating superior generalizability to previously unseen data. (2) The unsupervised domain-adaptation model consistently outperforms the source model, resulting in a significant enhancement in the mean intersection over union of SegFormer's source-only approach by a remarkable 10% to 22%. With the exception of a single case, the relative performance of unsupervised domain adaptation compared to supervised training with labeled data exceeds 85%, underscoring its promising performance in crack segmentation. Consequently, our adopted method emerges as a viable alternative, particularly in scenarios where labeled data is scarce or prohibitively expensive.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] QuadFormer: Real-Time Unsupervised Power Line Segmentation with Transformer-Based Domain Adaptation
    Rao, Pratyaksh Prabhav
    Qiao, Feng
    Zhang, Weide
    Xu, Yiliang
    Deng, Yong
    Wu, Guangbin
    Zhang, Qiang
    Loianno, Giuseppe
    2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 161 - 167
  • [12] Domain adaptation-based transfer learning using adversarial networks
    Shoeleh, Farzaneh
    Yadollahi, Mohammad Mehdi
    Asadpour, Masoud
    KNOWLEDGE ENGINEERING REVIEW, 2020, 35
  • [13] Unsupervised Domain Adaptation for Semantic Segmentation using Depth Distribution
    Wu, Quanliang
    Liu, Huajun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [14] VARIATIONAL AUTOENCODER BASED UNSUPERVISED DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2426 - 2430
  • [15] Domain Adaptation-Based Automatic Modulation Recognition
    Li, Tong
    Xiao, Yingzhe
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [16] MarsScapes and UDAFormer: A Panorama Dataset and a Transformer-Based Unsupervised Domain Adaptation Framework for Martian Terrain Segmentation
    Liu, Haiqiang
    Yao, Meibao
    Xiao, Xueming
    Zheng, Bo
    Cui, Hutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [17] ST-GAN: A Swin Transformer-Based Generative Adversarial Network for Unsupervised Domain Adaptation of Cross-Modality Cardiac Segmentation
    Zhang, Yifan
    Wang, Yonghui
    Xu, Lisheng
    Yao, Yudong
    Qian, Wei
    Qi, Lin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (02) : 893 - 904
  • [18] Remote Sensing Image Categorization with Domain Adaptation-based Convolution Neural Network
    Guo, Yiyou
    Huo, Hong
    Fang, Tao
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [19] Towards Unsupervised Domain Adaptation via Domain-Transformer
    Ren, Chuan-Xian
    Zhai, Yiming
    Luo, You-Wei
    Yan, Hong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 6163 - 6183
  • [20] Semantic adaptation network for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    NEUROCOMPUTING, 2021, 454 : 313 - 323