The principal eigenvalue for partially degenerate and periodic reaction-diffusion systems with time delay

被引:8
|
作者
Huang, Mingdi [1 ,2 ]
Wu, Shi-Liang [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Principal eigenvalue; Basic reproduction ratio; Partially degenerate systems; Time periodicity and delay; Global dynamics AMS subjective; NONLOCAL DISPERSAL; REPRODUCTION NUMBER; GLOBAL DYNAMICS; LYME-DISEASE; MODEL; TRANSMISSION; THRESHOLD; EQUATIONS; SPREAD;
D O I
10.1016/j.jde.2023.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first establish the theory of principal eigenvalues for a large class of partially degenerate, linear and periodic parabolic cooperative systems with time delay. Then we apply these theoretical results to study the global dynamics of a blacklegged tick Ixodes scapularis population model. To present a thresholdtype result in terms of basic reproduction ratio R0 for such a model, we also extend the earlier theory of R0 to abstract functional differential equations with time-delayed internal transition.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 449
页数:54
相关论文
共 50 条
  • [41] Finite-time stability of impulsive reaction-diffusion systems with and without time delay
    Wu, Kai-Ning
    Na, Ming-Ye
    Wang, Liming
    Ding, Xiaohua
    Wu, Boying
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [42] Propagation Dynamics in Time-Periodic Reaction-Diffusion Systems with Network Structures
    Deng, Dong
    Li, Wan-Tong
    Ruan, Shigui
    Zhang, Liang
    STUDIES IN APPLIED MATHEMATICS, 2025, 154 (01)
  • [43] Spreading fronts in a partially degenerate integro-differential reaction-diffusion system
    Li, Wan-Tong
    Zhao, Meng
    Wang, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [44] On the principal eigenvalue of degenerate quasilinear elliptic systems
    Zographopoulos, Nikolaos B.
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (09) : 1351 - 1365
  • [45] Reaction-Diffusion Problems on Time-Periodic Domains
    Allwright, Jane
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 37 (1) : 71 - 94
  • [46] PERIODIC-SOLUTIONS TO SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 301 (03): : 307 - 312
  • [47] On the Long Time Simulation of Reaction-Diffusion Equations with Delay
    Li, Dongfang
    Zhang, Chengjian
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [48] Quenching problem of a reaction-diffusion equation with time delay
    Pao, CV
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (1-2) : 133 - 142
  • [49] Global dynamics for a reaction-diffusion equation with time delay
    Huang, WZ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (02) : 293 - 326
  • [50] Cluster synchronisation of coupled delay reaction-diffusion systems
    Wu, Kai-Ning
    Zhang, Ya-Ming
    Wang, Liming
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (16) : 3391 - 3402