The principal eigenvalue for partially degenerate and periodic reaction-diffusion systems with time delay

被引:8
|
作者
Huang, Mingdi [1 ,2 ]
Wu, Shi-Liang [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Principal eigenvalue; Basic reproduction ratio; Partially degenerate systems; Time periodicity and delay; Global dynamics AMS subjective; NONLOCAL DISPERSAL; REPRODUCTION NUMBER; GLOBAL DYNAMICS; LYME-DISEASE; MODEL; TRANSMISSION; THRESHOLD; EQUATIONS; SPREAD;
D O I
10.1016/j.jde.2023.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first establish the theory of principal eigenvalues for a large class of partially degenerate, linear and periodic parabolic cooperative systems with time delay. Then we apply these theoretical results to study the global dynamics of a blacklegged tick Ixodes scapularis population model. To present a thresholdtype result in terms of basic reproduction ratio R0 for such a model, we also extend the earlier theory of R0 to abstract functional differential equations with time-delayed internal transition.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 449
页数:54
相关论文
共 50 条
  • [21] INDIRECT DIFFUSION EFFECT IN DEGENERATE REACTION-DIFFUSION SYSTEMS
    Einav, Amit
    Morgan, Jeffrey J.
    Tang, Bao Q.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4314 - 4361
  • [22] TRAVELING WAVE SOLUTIONS FOR TIME PERIODIC REACTION-DIFFUSION SYSTEMS
    Bo, Wei-Jian
    Lin, Guo
    Ruan, Shigui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) : 4329 - 4351
  • [23] TRAVELING FRONTS AND ENTIRE SOLUTIONS IN PARTIALLY DEGENERATE REACTION-DIFFUSION SYSTEMS WITH MONOSTABLE NONLINEARITY
    Wu, Shi-Liang
    Sun, Yu-Juan
    Liu, San-Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (02) : 921 - 946
  • [24] Creeping fronts in degenerate reaction-diffusion systems
    Heinze, S
    Schweizer, B
    NONLINEARITY, 2005, 18 (06) : 2455 - 2476
  • [25] On stability of two degenerate reaction-diffusion systems
    Xu, Chuang
    Wei, Junjie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) : 126 - 135
  • [26] Time-delay-induced instabilities in reaction-diffusion systems
    Sen, Shrabani
    Ghosh, Pushpita
    Riaz, Syed Shahed
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [27] LDG method for reaction-diffusion dynamical systems with time delay
    Li, Dongfang
    Zhang, Chengjian
    Qin, Hongyu
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 9173 - 9181
  • [28] Periodic kinks in reaction-diffusion systems
    J Phys A Math Gen, 3 (L67):
  • [29] Periodic kinks in reaction-diffusion systems
    Gordon, PV
    Vakulenko, SA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : L67 - L70
  • [30] Quasisolutions and dynamics of time-periodic nonquasimonotone reaction-diffusion systems
    Fu, SM
    Cui, SB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) : 349 - 358