Adaptive Graph Contrastive Learning for Recommendation

被引:46
|
作者
Jiang, Yangqin [1 ]
Huang, Chao [1 ]
Xia, Lianghao [1 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
关键词
Recommendation; Contrastive Learning; Data Augmentation;
D O I
10.1145/3580305.3599768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph neural networks (GNNs) have recently emerged as an effective collaborative filtering (CF) approaches for recommender systems. The key idea of GNN-based recommender systems is to recursively perform message passing along user-item interaction edges to refine encoded embeddings, relying on sufficient and high-quality training data. However, user behavior data in practical recommendation scenarios is often noisy and exhibits skewed distribution. To address these issues, some recommendation approaches, such as SGL, leverage self-supervised learning to improve user representations. These approaches conduct self-supervised learning through creating contrastive views, but they depend on the tedious trial-and-error selection of augmentation methods. In this paper, we propose a novel Adaptive Graph Contrastive Learning (AdaGCL) framework that conducts data augmentation with two adaptive contrastive view generators to better empower the CF paradigm. Specifically, we use two trainable view generators - a graph generative model and a graph denoising model - to create adaptive contrastive views. With two adaptive contrastive views, AdaGCL introduces additional high-quality training signals into the CF paradigm, helping to alleviate data sparsity and noise issues. Extensive experiments on three real-world datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods. Our model implementation codes are available at the link https://github.com/HKUDS/AdaGCL.
引用
收藏
页码:4252 / 4261
页数:10
相关论文
共 50 条
  • [41] Graph Contrastive Learning via Hierarchical Multiview Enhancement for Recommendation
    Liu, Zhi
    Xiang, Hengjing
    Liang, Ruxia
    Xiang, Jinhai
    Wen, Chaodong
    Liu, Sannyuya
    Sun, Jianwen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (03) : 2403 - 2412
  • [42] HCL: Hybrid Contrastive Learning for Graph-based Recommendation
    Ma, Xiyao
    Gao, Zheng
    Hu, Qian
    AbdelHady, Mohamed
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [43] Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation
    Liu, Kang
    Xue, Feng
    Guo, Dan
    Sun, Peijie
    Qian, Shengsheng
    Hong, Richang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 9343 - 9355
  • [44] A Knowledge Graph Recommendation Approach Incorporating Contrastive and Relationship Learning
    Shen, Xintao
    Zhang, Yulai
    IEEE ACCESS, 2023, 11 : 99628 - 99637
  • [45] Multi-contrastive Learning Recommendation Combined with Knowledge Graph
    Chen, Fei
    Kang, Zihan
    Zhang, Chenxi
    Wu, Chunming
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [46] Long-Tail Augmented Graph Contrastive Learning for Recommendation
    Zhao, Qian
    Wu, Zhengwei
    Zhang, Zhiqiang
    Zhou, Jun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 387 - 403
  • [47] XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation
    Yu, Junliang
    Xia, Xin
    Chen, Tong
    Cui, Lizhen
    Hung, Nguyen Quoc Viet
    Yin, Hongzhi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 913 - 926
  • [48] Social Relation Enhanced Heterogeneous Graph Contrastive Learning for Recommendation
    Wang, Jiaxi
    Wang, Bingce
    Zhang, Liwen
    Mo, Tong
    Li, Weiping
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 19 - 34
  • [49] Contrastive Graph Structure Learning via Information Bottleneck for Recommendation
    Wei, Chunyu
    Liang, Jian
    Liu, Di
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [50] Graph attention contrastive learning with missing modality for multimodal recommendation
    Zhao, Wenqian
    Yang, Kai
    Ding, Peijin
    Na, Ce
    Li, Wen
    KNOWLEDGE-BASED SYSTEMS, 2025, 311