Adaptive Graph Contrastive Learning for Recommendation

被引:46
|
作者
Jiang, Yangqin [1 ]
Huang, Chao [1 ]
Xia, Lianghao [1 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
关键词
Recommendation; Contrastive Learning; Data Augmentation;
D O I
10.1145/3580305.3599768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph neural networks (GNNs) have recently emerged as an effective collaborative filtering (CF) approaches for recommender systems. The key idea of GNN-based recommender systems is to recursively perform message passing along user-item interaction edges to refine encoded embeddings, relying on sufficient and high-quality training data. However, user behavior data in practical recommendation scenarios is often noisy and exhibits skewed distribution. To address these issues, some recommendation approaches, such as SGL, leverage self-supervised learning to improve user representations. These approaches conduct self-supervised learning through creating contrastive views, but they depend on the tedious trial-and-error selection of augmentation methods. In this paper, we propose a novel Adaptive Graph Contrastive Learning (AdaGCL) framework that conducts data augmentation with two adaptive contrastive view generators to better empower the CF paradigm. Specifically, we use two trainable view generators - a graph generative model and a graph denoising model - to create adaptive contrastive views. With two adaptive contrastive views, AdaGCL introduces additional high-quality training signals into the CF paradigm, helping to alleviate data sparsity and noise issues. Extensive experiments on three real-world datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods. Our model implementation codes are available at the link https://github.com/HKUDS/AdaGCL.
引用
收藏
页码:4252 / 4261
页数:10
相关论文
共 50 条
  • [21] Graph Contrastive Learning with Adaptive Augmentation
    Zhu, Yanqiao
    Xu, Yichen
    Yu, Feng
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2069 - 2080
  • [22] AGCL: Adaptive Graph Contrastive Learning for graph representation learning
    Yu, Jiajun
    Jia, Adele Lu
    NEUROCOMPUTING, 2024, 566
  • [23] A Learning Resource Recommendation Method Based on Graph Contrastive Learning
    Yong, Jiu
    Wei, Jianguo
    Lei, Xiaomei
    Dang, Jianwu
    Lu, Wenhuan
    Cheng, Meijuan
    ELECTRONICS, 2025, 14 (01):
  • [24] Information-Controllable Graph Contrastive Learning for Recommendation
    Guo, Zirui
    Yu, Yanhua
    Wang, Yuling
    Lu, Kangkang
    Yang, Zixuan
    Pang, Liang
    Chua, Tat-Seng
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 528 - 537
  • [25] MDGCL: Message Dropout Graph Contrastive Learning for Recommendation
    Xu, Qijia
    Li, Wei
    Chen, Jingxin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 60 - 71
  • [26] Quaternion-Based Graph Contrastive Learning for Recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Xian, Xuefeng
    Fang, Junhua
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [27] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [28] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [29] Candidate-aware Graph Contrastive Learning for Recommendation
    He, Wei
    Sun, Guohao
    Lu, Jinhu
    Fang, Xiu Susie
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1670 - 1679
  • [30] SSGCL: Simple Social Recommendation with Graph Contrastive Learning
    Duan, Zhihua
    Wang, Chun
    Zhong, Wending
    MATHEMATICS, 2024, 12 (07)