Tuning perovskite nanocrystal superlattices for superradiance in the presence of disorder

被引:4
|
作者
Nguyen, T. P. Tan [1 ]
Tan, Liang Z. [2 ]
Baranov, Dmitry [3 ]
机构
[1] Univ Rennes, ENSCR, CNRS, ISCR Inst Sci Chim Rennes,UMR6226, Rennes, France
[2] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[3] Lund Univ, Dept Chem, Div Chem Phys, POB 124, SE-22100 Lund, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 20期
基金
欧洲研究理事会;
关键词
OPTICAL-PROPERTIES;
D O I
10.1063/5.0167542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cooperative emission of interacting nanocrystals is an exciting topic fueled by recent reports of superfluorescence and superradiance in assemblies of perovskite nanocubes. Several studies estimated that coherent coupling is localized to a small fraction of nanocrystals (10(-7)-10(-3)) within the assembly, raising questions about the origins of localization and ways to overcome it. In this work, we examine single-excitation superradiance by calculating radiative decays and the distribution of superradiant wave function in two-dimensional CsPbBr3 nanocube superlattices. The calculations reveal that the energy disorder caused by size distribution and large interparticle separations reduces radiative coupling and leads to the excitation localization, with the energy disorder being the dominant factor. The single-excitation model clearly predicts that, in the pursuit of cooperative effects, having identical nanocubes in the superlattice is more important than achieving a perfect spatial order. The monolayers of large CsPbBr3 nanocubes (L-NC = 10-20 nm) are proposed as model systems for experimental tests of superradiance under conditions of non-negligible size dispersion, while small nanocubes (L-NC = 5-10 nm) are preferred for realizing the Dicke state under ideal conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Colloidal synthesis of nanocrystals and nanocrystal superlattices
    Murray, CB
    Sun, SH
    Gaschler, W
    Doyle, H
    Betley, TA
    Kagan, CR
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) : 47 - 56
  • [42] Multicomponent perovskite superlattices
    Jana, Atanu
    Jo, Yongcheol
    Im, Hyunsik
    MATTER, 2021, 4 (08) : 2607 - 2609
  • [43] Refractive Index Regulation of Gold Nanocrystal Superlattices by Varying the Nanocrystal Size
    Sato, Seiichi
    Ito, Takeyasu
    Kimura, Keisaku
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (06) : 06GJ051 - 06GJ053
  • [44] Halide Perovskite Nanocrystal Emitters
    Liu, Maning
    Grandhi, G. Krishnamurthy
    Matta, Sri
    Mokurala, Krishnaiah
    Litvin, Aleksandr
    Russo, Salvy
    Vivo, Paola
    ADVANCED PHOTONICS RESEARCH, 2021, 2 (03):
  • [45] Ultrafast Carrier Transport in Silicon Nanocrystal Superlattices
    Nemec, H.
    Kuzel, P.
    Maly, P.
    Hiller, D.
    Gutsch, S.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [46] Stability and Free Energy of Nanocrystal Chains and Superlattices
    Zha, Xun
    Travesset, Alex
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (40): : 23153 - 23164
  • [47] Inkjet printing of epitaxially connected nanocrystal superlattices
    Daniel M. Balazs
    N. Deniz Erkan
    Michelle Quien
    Tobias Hanrath
    Nano Research, 2022, 15 : 4536 - 4543
  • [48] Growth of Nanocrystal Superlattices from Liquid Crystals
    Yang, Shengsong
    Ning, Yifan
    Zhang, Yugang
    Murray, Christopher B.
    Journal of the American Chemical Society, 2024,
  • [49] Growth of Nanocrystal Superlattices from Liquid Crystals
    Yang, Shengsong
    Ning, Yifan
    Zhang, Yugang
    Murray, Christopher B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (16) : 11043 - 11047
  • [50] Inkjet printing of epitaxially connected nanocrystal superlattices
    Balazs, Daniel M.
    Erkan, N. Deniz
    Quien, Michelle
    Hanrath, Tobias
    NANO RESEARCH, 2022, 15 (05) : 4536 - 4543