Tuning perovskite nanocrystal superlattices for superradiance in the presence of disorder

被引:4
|
作者
Nguyen, T. P. Tan [1 ]
Tan, Liang Z. [2 ]
Baranov, Dmitry [3 ]
机构
[1] Univ Rennes, ENSCR, CNRS, ISCR Inst Sci Chim Rennes,UMR6226, Rennes, France
[2] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[3] Lund Univ, Dept Chem, Div Chem Phys, POB 124, SE-22100 Lund, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 20期
基金
欧洲研究理事会;
关键词
OPTICAL-PROPERTIES;
D O I
10.1063/5.0167542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cooperative emission of interacting nanocrystals is an exciting topic fueled by recent reports of superfluorescence and superradiance in assemblies of perovskite nanocubes. Several studies estimated that coherent coupling is localized to a small fraction of nanocrystals (10(-7)-10(-3)) within the assembly, raising questions about the origins of localization and ways to overcome it. In this work, we examine single-excitation superradiance by calculating radiative decays and the distribution of superradiant wave function in two-dimensional CsPbBr3 nanocube superlattices. The calculations reveal that the energy disorder caused by size distribution and large interparticle separations reduces radiative coupling and leads to the excitation localization, with the energy disorder being the dominant factor. The single-excitation model clearly predicts that, in the pursuit of cooperative effects, having identical nanocubes in the superlattice is more important than achieving a perfect spatial order. The monolayers of large CsPbBr3 nanocubes (L-NC = 10-20 nm) are proposed as model systems for experimental tests of superradiance under conditions of non-negligible size dispersion, while small nanocubes (L-NC = 5-10 nm) are preferred for realizing the Dicke state under ideal conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Doped nanocrystal superlattices
    Angang Dong
    Science Bulletin, 2015, 60 (22) : 1964 - 1965
  • [22] Doped nanocrystal superlattices
    Dong, Angang
    SCIENCE BULLETIN, 2015, 60 (22) : 1964 - 1965
  • [23] Substitutional doping in nanocrystal superlattices
    Matteo Cargnello
    Aaron C. Johnston-Peck
    Benjamin T. Diroll
    Eric Wong
    Bianca Datta
    Divij Damodhar
    Vicky V. T. Doan-Nguyen
    Andrew A. Herzing
    Cherie R. Kagan
    Christopher B. Murray
    Nature, 2015, 524 : 450 - 453
  • [24] Substitutional doping in nanocrystal superlattices
    Cargnello, Matteo
    Johnston-Peck, Aaron C.
    Diroll, Benjamin T.
    Wong, Eric
    Datta, Bianca
    Damodhar, Divij
    Doan-Nguyen, Vicky V. T.
    Herzing, Andrew A.
    Kagan, Cherie R.
    Murray, Christopher B.
    NATURE, 2015, 524 (7566) : 450 - +
  • [25] Soft epitaxy of nanocrystal superlattices
    Sara M. Rupich
    Fernando C. Castro
    William T. M. Irvine
    Dmitri V. Talapin
    Nature Communications, 5
  • [26] Soft epitaxy of nanocrystal superlattices
    Rupich, Sara M.
    Castro, Fernando C.
    Irvine, William T. M.
    Talapin, Dmitri V.
    NATURE COMMUNICATIONS, 2014, 5
  • [27] Anisotropic Cracking of Nanocrystal Superlattices
    Diroll, Benjamin T.
    Ma, Xuedan
    Wu, Yaoting
    Murray, Christopher B.
    NANO LETTERS, 2017, 17 (10) : 6501 - 6506
  • [28] Diffraction from Nanocrystal Superlattices
    Cervellino, Antonio
    Frison, Ruggero
    NANOMATERIALS, 2022, 12 (10)
  • [29] Tuning Perovskite Nanocrystal Synthesis via Amphiphilic Block Copolymer Templates and Solvent Interactions
    Sun, Ya-Sen
    Wu, Kuan-Wei
    Shih, Orion
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (45) : 62664 - 62679
  • [30] Laser-Induced Optoelectronic Tuning of Perovskite Nanocrystal Films for Multicolor Pattern Displays
    Wei, Yi
    Chen, Jun
    Liang, Lumeng
    Wang, Jiaxin
    Zeng, Haibo
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 11020 - 11027