Engineering Defect-Rich Bimetallic Telluride with Dense Heterointerfaces for High-Performance Lithium-Sulfur Batteries

被引:21
|
作者
Wu, Xiangpeng [1 ]
Xie, Rongjun [1 ]
Cai, Daoping [1 ]
Fei, Ban [1 ,2 ]
Zhang, Chaoqi [1 ,3 ]
Chen, Qidi [1 ]
Sa, Baisheng [1 ]
Zhan, Hongbing [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
[2] Univ Dublin, Trinity Coll Dublin, Coll Green, Dublin D02 PN40, Ireland
[3] Catalonia Inst Energy Res IREC, St Adria De Besos 08930, Barcelona, Spain
关键词
bimetallic tellurides; defects; electrocatalysts; heterointerfaces; lithium-sulfur batteries; HETEROSTRUCTURE;
D O I
10.1002/adfm.202315012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium-sulfur (Li-S) batteries have received ever-increasing attention owing to their ultrahigh theoretical energy density, low cost, and environmental friendliness. However, their practical application is critically plagued by the sluggish reaction kinetics, shuttling of soluble polysulfide intermediates, and uncontrollable growth of Li dendrites. Herein, a bimetallic telluride electrocatalyst with dense heterointerfaces and rich defects embedded in hollow carbon polyhedron bunches (N subset of CoTe1-x/ZnTe1-y@NC, abbreviated as NCZTC) is rationally designed to simultaneously address the S cathode and Li anode problems. Both experimental and computational results substitute the integration of dense heterointerfaces and rich defects can synergistically modulate the electronic structure, enhance the electrical conductivity, promote the Li+ transportation, strengthen the polysulfides adsorption and improve the catalytic activity, thereby significantly accelerating the redox conversion kinetics and prevent the dendrite growth. Consequently, Li-S batteries with NCZTC-modified separators demonstrate excellent electrochemical performance including high specific discharge capacity, remarkable rate capability, good long-term cycling stability, and competitive areal capacity even at high sulfur loading and lean electrolyte conditions. This study not only provides valuable guidance for designing efficient sulfur electrocatalysts with transition metal tellurides but also emphasizes the importance of heterostructure design and defect engineering for high-performance Li-S batteries. The high-efficiency N subset of CoTe1-x/ZnTe1-y@NC electrocatalyst is rationally designed for Li-S batteries. Both experimental and theoretical results substantiate that the integration of dense heterointerfaces and rich defects (Te vacancy-induced N-doping) can synergistically accelerate the sulfur conversion and protect the lithium anode from corrosion. This study provides an innovative strategy for constructing high-performance sulfur electrocatalysts with transition metal tellurides. image
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Defect-rich ultrafine amorphous tin oxyhydroxide nanoparticle anode for high-performance lithium-ion batteries
    Lee, Jaewoo
    Lee, Na Eun
    Lee, Sang Yoon
    Cheon, Seunguk
    Cho, Sung Oh
    MATERIALS TODAY SUSTAINABILITY, 2023, 22
  • [42] Boosting High-Performance in Lithium-Sulfur Batteries via Dilute Electrolyte
    Wu, Feixiang
    Chu, Fulu
    Ferrero, Guillermo A.
    Sevilla, Marta
    Fuertes, Antonio B.
    Borodin, Oleg
    Yu, Yan
    Yushin, Gleb
    NANO LETTERS, 2020, 20 (07) : 5391 - 5399
  • [43] Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries
    An, Yongling
    Tian, Yuan
    Fei, Huifang
    Zeng, Guifang
    Duan, Hongwei
    Zhang, Sichao
    Zhou, Peng
    Ci, Lijie
    Feng, Jinkui
    MATERIALS LETTERS, 2018, 228 : 175 - 178
  • [44] Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries
    Wang, Lili
    Ye, Yusheng
    Chen, Nan
    Huang, Yongxin
    Li, Li
    Wu, Feng
    Chen, Renjie
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [45] Novel gel polymer electrolyte for high-performance lithium-sulfur batteries
    Liu, Ming
    Zhou, Dong
    He, Yan-Bing
    Fu, Yongzhu
    Qin, Xianying
    Miao, Cui
    Du, Hongda
    Li, Baohua
    Yang, Quan-Hong
    Lin, Zhiqun
    Zhao, T. S.
    Kang, Feiyu
    NANO ENERGY, 2016, 22 : 278 - 289
  • [46] Functional Carbon Interlayer with Indium Oxide-Rich Nanoparticles for High-Performance Lithium-Sulfur Batteries
    Ma, Ting
    Xiao, Yibo
    Lv, Xiaoxia
    Yue, Haixia
    Huang, Yaxin
    Li, Xin
    He, Na
    Zhan, Changzhen
    Bai, Yu
    Nan, Ding
    BATTERIES & SUPERCAPS, 2025,
  • [47] Permselective Ionic-Shield for High-Performance Lithium-Sulfur Batteries
    Kim, Soochan
    Yang, Kyeongmin
    Yang, Kaiwei
    De Volder, Michael
    Lee, Youngkwan
    NANO LETTERS, 2023, 23 (22) : 10391 - 10397
  • [48] Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries
    Li, Lu
    Chen, Long
    Mukherjee, Sankha
    Gao, Jian
    Sun, Hao
    Liu, Zhibo
    Ma, Xiuliang
    Gupta, Tushar
    Singh, Chandra Veer
    Ren, Wencai
    Cheng, Hui-Ming
    Koratkar, Nikhil
    ADVANCED MATERIALS, 2017, 29 (02)
  • [49] Ternary hybrid material structures for high-performance lithium-sulfur batteries
    Wang, Hailiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [50] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715