Engineering Defect-Rich Bimetallic Telluride with Dense Heterointerfaces for High-Performance Lithium-Sulfur Batteries

被引:21
|
作者
Wu, Xiangpeng [1 ]
Xie, Rongjun [1 ]
Cai, Daoping [1 ]
Fei, Ban [1 ,2 ]
Zhang, Chaoqi [1 ,3 ]
Chen, Qidi [1 ]
Sa, Baisheng [1 ]
Zhan, Hongbing [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
[2] Univ Dublin, Trinity Coll Dublin, Coll Green, Dublin D02 PN40, Ireland
[3] Catalonia Inst Energy Res IREC, St Adria De Besos 08930, Barcelona, Spain
关键词
bimetallic tellurides; defects; electrocatalysts; heterointerfaces; lithium-sulfur batteries; HETEROSTRUCTURE;
D O I
10.1002/adfm.202315012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium-sulfur (Li-S) batteries have received ever-increasing attention owing to their ultrahigh theoretical energy density, low cost, and environmental friendliness. However, their practical application is critically plagued by the sluggish reaction kinetics, shuttling of soluble polysulfide intermediates, and uncontrollable growth of Li dendrites. Herein, a bimetallic telluride electrocatalyst with dense heterointerfaces and rich defects embedded in hollow carbon polyhedron bunches (N subset of CoTe1-x/ZnTe1-y@NC, abbreviated as NCZTC) is rationally designed to simultaneously address the S cathode and Li anode problems. Both experimental and computational results substitute the integration of dense heterointerfaces and rich defects can synergistically modulate the electronic structure, enhance the electrical conductivity, promote the Li+ transportation, strengthen the polysulfides adsorption and improve the catalytic activity, thereby significantly accelerating the redox conversion kinetics and prevent the dendrite growth. Consequently, Li-S batteries with NCZTC-modified separators demonstrate excellent electrochemical performance including high specific discharge capacity, remarkable rate capability, good long-term cycling stability, and competitive areal capacity even at high sulfur loading and lean electrolyte conditions. This study not only provides valuable guidance for designing efficient sulfur electrocatalysts with transition metal tellurides but also emphasizes the importance of heterostructure design and defect engineering for high-performance Li-S batteries. The high-efficiency N subset of CoTe1-x/ZnTe1-y@NC electrocatalyst is rationally designed for Li-S batteries. Both experimental and theoretical results substantiate that the integration of dense heterointerfaces and rich defects (Te vacancy-induced N-doping) can synergistically accelerate the sulfur conversion and protect the lithium anode from corrosion. This study provides an innovative strategy for constructing high-performance sulfur electrocatalysts with transition metal tellurides. image
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Polyglutamic Acid Binder for High-Performance Lithium-Sulfur Batteries
    Pang, Zhiyuan
    Zhang, Hongzhou
    Ma, Yue
    Song, Dawei
    Shi, Xixi
    Zhang, Lianqi
    Zhou, Yong
    COATINGS, 2022, 12 (10)
  • [32] A tandem electrocatalyst with dense heterointerfaces enabling the stepwise conversion of polysulfide in lithium-sulfur batteries
    Qin, Bin
    Zhao, Xiaomei
    Wang, Qun
    Yao, Weiqi
    Cai, Yifei
    Chen, Yuhan
    Wang, Pengcheng
    Zou, YongChun
    Cao, Jian
    Zheng, Xiaohang
    Qi, Junlei
    Cai, Wei
    ENERGY STORAGE MATERIALS, 2023, 55 : 445 - 454
  • [33] Bimetallic Metal-Organic Framework Catalyst to Accelerate Sulfur Conversion Kinetics for High-Performance Lithium-Sulfur Batteries
    Lu, Han
    Luo, Zichun
    Wang, Xingbo
    Guo, Jiaxiang
    Yan, Xiang
    Yang, Lin
    Wang, Jiayi
    Liu, Wen
    Chen, Zhongwei
    INORGANIC CHEMISTRY, 2025, 64 (08) : 4052 - 4061
  • [34] A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries
    Zeng, Shuaibo
    Li, Xin
    Guo, Fei
    Zhong, Hai
    Mai, Yaohua
    ELECTROCHIMICA ACTA, 2019, 320
  • [35] Targeted Catalysis of the Sulfur Evolution Reaction for High-Performance Lithium-Sulfur Batteries
    Qu, Wenjia
    Lu, Ziyang
    Geng, Chuannan
    Wang, Li
    Guo, Yong
    Zhang, Yibo
    Wang, Weichao
    Lv, Wei
    Yang, Quan-Hong
    ADVANCED ENERGY MATERIALS, 2022, 12 (38)
  • [36] Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium-Sulfur Batteries
    Zhou, Guangmin
    Yin, Li-Chang
    Wang, Da-Wei
    Li, Lu
    Pei, Songfeng
    Gentle, Ian Ross
    Li, Feng
    Cheng, Hui-Ming
    ACS NANO, 2013, 7 (06) : 5367 - 5375
  • [37] Ultrafast Strategy to Fabricate Sulfur Cathodes for High-Performance Lithium-Sulfur Batteries
    Liu, Kun
    Yuan, Huimin
    Wang, Xinyang
    Ye, Peiyuan
    Lu, Binda
    Zhang, Junjie
    Lu, Wang
    Jiang, Feng
    Gu, Shuai
    Chen, Jingjing
    Yan, Chunliu
    Li, Yingzhi
    Xu, Zhenghe
    Lu, Zhouguang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (26) : 31478 - 31490
  • [38] Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries
    Lai, Chao
    Wu, Zhenzhen
    Gu, Xingxing
    Wang, Chao
    Xi, Kai
    Kumar, R. Vasant
    Zhang, Shanqing
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (43) : 23885 - 23892
  • [39] Surface Defect Engineering of a Bimetallic Oxide Precatalyst Enables Kinetics-Enhanced Lithium-Sulfur Batteries
    Zhao, Gang
    Kao, Cheng-Wei
    Gu, Zhonghao
    Zhou, Shaohui
    Chang, Lo-Yueh
    Yan, Tianran
    Cheng, Chen
    Li, Hongtai
    Chan, Ting-Shan
    Zhang, Liang
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (44) : 49680 - 49688
  • [40] Chemical anchor of lithium polysulfide through sulfur copolymers for high-performance lithium-sulfur batteries
    Zhu, Mengqi
    Zhao, Huaqi
    Quan, Kechun
    Chen, Huiduan
    Zhang, Shasha
    Yi, Huiping
    Zhang, Jindan
    ELECTROCHIMICA ACTA, 2024, 474