Hamilton cycles in dense regular digraphs and oriented graphs

被引:0
|
作者
Lo, Allan [1 ]
Patel, Viresh [2 ]
Yildiz, Mehmet Akif [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, England
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Univ Amsterdam, Korteweg de Vries Inst Wiskunde, Amsterdam, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Hamilton cycle; Robust expander; Regular; Digraph; Oriented graph; DECOMPOSITIONS; EXPANDERS;
D O I
10.1016/j.jctb.2023.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every epsilon > 0 there exists n(0) = n(0)(epsilon) such that every regular oriented graph on n > n(0) vertices and degree at least (1/4 + epsilon)n has a Hamilton cycle. This establishes an approximate version of a conjecture of Jackson from 1981. We also establish a result related to a conjecture of Kuhn and Osthus about the Hamiltonicity of regular directed graphs with suitable degree and connectivity conditions.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:119 / 160
页数:42
相关论文
共 50 条
  • [31] Consistent Cycles in Graphs and Digraphs
    Štefko Miklavič
    Primož Potočnik
    Steve Wilson
    Graphs and Combinatorics, 2007, 23 : 205 - 216
  • [32] Consistent cycles in graphs and digraphs
    Miklavic, Stefko
    Potocnik, Primoz
    Wilson, Steve
    GRAPHS AND COMBINATORICS, 2007, 23 (02) : 205 - 216
  • [33] Hamilton cycles containing randomly selected edges in random regular graphs
    Robinson, RW
    Wormald, NC
    RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (02) : 128 - 147
  • [34] RAINBOW HAMILTON CYCLES IN RANDOMLY COLORED RANDOMLY PERTURBED DENSE GRAPHS
    Aigner-Horev, Elad
    Hefetz, Dan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1569 - 1577
  • [35] Powers of Hamilton cycles in dense graphs perturbed by a random geometric graph
    Diaz, Alberto Espuny
    Hyde, Joseph
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 121
  • [36] COUNTING THE NUMBER OF HAMILTON CYCLES IN RANDOM DIGRAPHS
    FRIEZE, A
    SUEN, S
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) : 235 - 241
  • [37] Finding hamilton cycles in robustly expanding digraphs
    Christofides, Demetres
    Keevash, Peter
    Kühn, Daniela
    Osthus, Deryk
    Journal of Graph Algorithms and Applications, 2012, 16 (02) : 335 - 358
  • [38] k-Ordered Hamilton cycles in digraphs
    Kuehn, Daniela
    Cisthus, Deryk
    Young, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) : 1165 - 1180
  • [39] A SEMIEXACT DEGREE CONDITION FOR HAMILTON CYCLES IN DIGRAPHS
    Christofides, Demetres
    Keevash, Peter
    Kuehn, Daniela
    Osthus, Deryk
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 709 - 756
  • [40] Hamilton cycles in sparse robustly expanding digraphs
    Lo, Allan
    Patel, Viresh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):