Hamilton cycles in dense regular digraphs and oriented graphs

被引:0
|
作者
Lo, Allan [1 ]
Patel, Viresh [2 ]
Yildiz, Mehmet Akif [3 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham, England
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Univ Amsterdam, Korteweg de Vries Inst Wiskunde, Amsterdam, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Hamilton cycle; Robust expander; Regular; Digraph; Oriented graph; DECOMPOSITIONS; EXPANDERS;
D O I
10.1016/j.jctb.2023.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every epsilon > 0 there exists n(0) = n(0)(epsilon) such that every regular oriented graph on n > n(0) vertices and degree at least (1/4 + epsilon)n has a Hamilton cycle. This establishes an approximate version of a conjecture of Jackson from 1981. We also establish a result related to a conjecture of Kuhn and Osthus about the Hamiltonicity of regular directed graphs with suitable degree and connectivity conditions.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:119 / 160
页数:42
相关论文
共 50 条
  • [21] Finding and enumerating Hamilton cycles in 4-regular graphs
    Gebauer, Heidi
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (35) : 4579 - 4591
  • [22] HAMILTON CYCLES IN 2-CONNECTED REGULAR BIPARTITE GRAPHS
    JACKSON, B
    LI, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (02) : 236 - 258
  • [23] A NOTE ON COLOR-BIAS HAMILTON CYCLES IN DENSE GRAPHS
    Freschi, Andrea
    Hyde, Joseph
    Lada, Joanna
    Treglown, Andrew
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 970 - 975
  • [24] THE ASYMPTOTIC NUMBERS OF REGULAR TOURNAMENTS, EULERIAN DIGRAPHS AND EULERIAN ORIENTED GRAPHS
    MCKAY, BD
    COMBINATORICA, 1990, 10 (04) : 367 - 377
  • [25] An exact minimum degree condition for Hamilton cycles in oriented graphs
    Keevash, Peter
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 144 - 166
  • [26] Hamilton cycles in digraphs of unitary matrices
    Gutin, G.
    Rafiey, A.
    Severini, S.
    Yeo, A.
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3315 - 3320
  • [27] A Dirac-Type Result on Hamilton Cycles in Oriented Graphs
    Kelly, Luke
    Kuehn, Daniela
    Osthust, Deryk
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (05): : 689 - 709
  • [28] ARBITRARY ORIENTATIONS OF HAMILTON CYCLES IN DIGRAPHS
    Debiasio, Louis
    Kuehn, Daniela
    Molla, Theodore
    Osthus, Deryk
    Taylor, Amelia
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1553 - 1584
  • [29] EDGE-DISJOINT HAMILTON CYCLES IN REGULAR GRAPHS OF LARGE DEGREE
    JACKSON, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (FEB): : 13 - 16
  • [30] HAMILTON CYCLES IN ALMOST-REGULAR 2-CONNECTED GRAPHS
    JACKSON, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (01) : 77 - 87