Fully Attentional Network for Skeleton-Based Action Recognition

被引:0
|
作者
Liu, Caifeng [1 ]
Zhou, Hongcheng [2 ]
机构
[1] Dalian Commod Exchange, Postdoctoral Workstat, Dalian 116023, Peoples R China
[2] Futures Informat Technol Co Ltd, Dalian Commod Exchange, Dalian 116023, Peoples R China
关键词
Skeleton-based action recognition; spatial attention module; temporal attention module;
D O I
10.1109/ACCESS.2023.3247840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the extraordinary ability by representing human body structure as a spatial graph, graph convolution networks (GCNs) have progressed much in skeleton-based action recognition. However, these methods usually use a predefined graph to represent human body structure, which is limited to 1-hop neighborhood with fixed weights. To handle these limitations, we propose a fully attentional network (FAN). It dynamically computes the edge weights for each input sample between graph nodes, thus avoiding the predefined fixed weights. Besides, it could attend to distant nodes by calculating their edge weights based on their similarities, thus avoiding the limited spatial receptive field. As an effective feature extractor, FAN achieves new state-of-the-art accuracy on three large-scale datasets, i.e., NTU RGB+D 60, NTU RGB+D 120 and Kinetics Skeleton 400. Visualizations are given to verify that FAN could dynamically emphasize the graph nodes that are important in expressing an action.
引用
收藏
页码:20478 / 20485
页数:8
相关论文
共 50 条
  • [21] Symmetrical Enhanced Fusion Network for Skeleton-Based Action Recognition
    Kong, Jun
    Deng, Haoyang
    Jiang, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4394 - 4408
  • [22] Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognition
    Huang, Linjiang
    Huang, Yan
    Ouyang, Wanli
    Wang, Liang
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 93 - 102
  • [23] Revisiting Skeleton-based Action Recognition
    Duan, Haodong
    Zhao, Yue
    Chen, Kai
    Lin, Dahua
    Dai, Bo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2959 - 2968
  • [24] Skeleton-based action recognition based on multidimensional adaptive convolutional network
    Xia, Yu
    Gao, Qingyuan
    Wu, Weiguan
    Cao, Yi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [25] Hybrid features for skeleton-based action recognition based on network fusion
    Chen, Zhangmeng
    Pan, Junjun
    Yang, Xiaosong
    Qin, Hong
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [26] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [27] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [28] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [29] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [30] Hierarchical Aggregated Graph Neural Network for Skeleton-Based Action Recognition
    Geng, Pei
    Lu, Xuequan
    Li, Wanqing
    Lyu, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 11003 - 11017