Hybrid features for skeleton-based action recognition based on network fusion

被引:4
|
作者
Chen, Zhangmeng [1 ,2 ]
Pan, Junjun [1 ,2 ]
Yang, Xiaosong [3 ]
Qin, Hong [4 ]
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Bournemouth Univ, Fac Media & Commun, Poole, Dorset, England
[4] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金; 北京市自然科学基金; 美国国家科学基金会; 国家重点研发计划;
关键词
action recognition; CNN; human skeleton; hybrid features; LSTM; multistream neural network;
D O I
10.1002/cav.1952
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In recent years, the topic of skeleton-based human action recognition has attracted significant attention from researchers and practitioners in graphics, vision, animation, and virtual environments. The most fundamental issue is how to learn an effective and accurate representation from spatiotemporal action sequences towards improved performance, and this article aims to address the aforementioned challenge. In particular, we design a novel method of hybrid features' extraction based on the construction of multistream networks and their organic fusion. First, we train a convolution neural networks (CNN) model to learn CNN-based features with the raw skeleton coordinates and their temporal differences serving as input signals. The attention mechanism is injected into the CNN model to weigh more effective and important information. Then, we employ long short-term memory (LSTM) to obtain long-term temporal features from action sequences. Finally, we generate the hybrid features by fusing the CNN and LSTM networks, and we classify action types with the hybrid features. The extensive experiments are performed on several large-scale publically available databases, and promising results demonstrate the efficacy and effectiveness of our proposed framework.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Spatiotemporal Fusion Network For Skeleton-Based Action Recognition
    Bao, Wenxia
    Wang, Junyi
    Yang, Xianjun
    Chen, Hemu
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 347 - 352
  • [2] Symmetrical Enhanced Fusion Network for Skeleton-Based Action Recognition
    Kong, Jun
    Deng, Haoyang
    Jiang, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4394 - 4408
  • [3] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [4] RELATIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zheng, Wu
    Li, Lin
    Zhang, Zhaoxiang
    Huang, Yan
    Wang, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 826 - 831
  • [5] Fully Attentional Network for Skeleton-Based Action Recognition
    Liu, Caifeng
    Zhou, Hongcheng
    IEEE ACCESS, 2023, 11 : 20478 - 20485
  • [6] Skeleton-based Action Recognition with Graph Involution Network
    Tang, Zhihao
    Xia, Hailun
    Gao, Xinkai
    Gao, Feng
    Feng, Chunyan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3348 - 3354
  • [7] Convolutional relation network for skeleton-based action recognition
    Zhu, Jiagang
    Zou, Wei
    Zhu, Zheng
    Hu, Yiming
    NEUROCOMPUTING, 2019, 370 : 109 - 117
  • [8] Hypergraph Neural Network for Skeleton-Based Action Recognition
    Hao, Xiaoke
    Li, Jie
    Guo, Yingchun
    Jiang, Tao
    Yu, Ming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2263 - 2275
  • [9] Fusion sampling networks for skeleton-based human action recognition
    Chen, Guannan
    Wei, Shimin
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [10] Multi-Stream Fusion Network for Skeleton-Based Construction Worker Action Recognition
    Tian, Yuanyuan
    Liang, Yan
    Yang, Haibin
    Chen, Jiayu
    SENSORS, 2023, 23 (23)