Estimates for eigenvalues of the Neumann and Steklov problems

被引:3
|
作者
Du, Feng [1 ,3 ,4 ]
Mao, Jing [1 ,2 ,3 ]
Wang, Qiaoling [5 ]
Xia, Changyu [6 ]
Zhao, Yan [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
[4] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[5] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[6] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guandong, Peoples R China
关键词
Neumann eigenvalue problem; Steklov eigenvalue problem; biharmonic operator; eigenvalues; Fourier transform; BOUNDS;
D O I
10.1515/anona-2022-0321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Li-Yau-Kroger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] MAXIMIZING STEKLOV EIGENVALUES ON SURFACES
    Petrides, Romain
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 113 (01) : 95 - 188
  • [32] A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
    Dello Russo, Anahi
    Alonso, Ana E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) : 4100 - 4117
  • [33] Existence and multiplicity of solutions for discrete Neumann-Steklov problems with singular ϕ-Laplacian
    Yanqiong Lu
    Ruyun Ma
    Bo Lu
    Advances in Difference Equations, 2017
  • [34] On Steklov-Neumann boundary value problems for some quasilinear elliptic equations
    de Godoi, Juliano D. B.
    Miyagaki, Olimpio H.
    Rodrigues, Rodrigo S.
    APPLIED MATHEMATICS LETTERS, 2015, 45 : 47 - 51
  • [35] Existence and multiplicity of solutions for discrete Neumann-Steklov problems with singular φ-Laplacian
    Lu, Yanqiong
    Ma, Ruyun
    Lu, Bo
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [36] Isoperimetric Inequalities for the Magnetic Neumann and Steklov Problems with Aharonov–Bohm Magnetic Potential
    Bruno Colbois
    Luigi Provenzano
    Alessandro Savo
    The Journal of Geometric Analysis, 2022, 32
  • [37] Sloshing, Steklov and corners: Asymptotics of Steklov eigenvalues for curvilinear polygons
    Levitin, Michael
    Parnovski, Leonid
    Polterovich, Iosif
    Sher, David A.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (03) : 359 - 487
  • [38] Minimax State Estimates for Abstract Neumann Problems
    Zhuk, Sergiy
    Nakonechnii, Olexander
    MINIMAX THEORY AND ITS APPLICATIONS, 2018, 3 (01): : 1 - 21
  • [39] Borderline sharp estimates for solutions to Neumann problems
    Alberico, Angela
    Cianchi, Andrea
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2007, 32 (01) : 27 - 53
  • [40] MOSER TYPE ESTIMATES IN NONLINEAR NEUMANN PROBLEMS
    Alberico, Angela
    Cianchi, Andrea
    MATEMATICHE, 2005, 60 (02): : 363 - 368