Estimates for eigenvalues of the Neumann and Steklov problems

被引:3
|
作者
Du, Feng [1 ,3 ,4 ]
Mao, Jing [1 ,2 ,3 ]
Wang, Qiaoling [5 ]
Xia, Changyu [6 ]
Zhao, Yan [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
[4] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[5] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[6] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guandong, Peoples R China
关键词
Neumann eigenvalue problem; Steklov eigenvalue problem; biharmonic operator; eigenvalues; Fourier transform; BOUNDS;
D O I
10.1515/anona-2022-0321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Li-Yau-Kroger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.
引用
收藏
页数:12
相关论文
共 50 条