Estimates for eigenvalues of the Neumann and Steklov problems

被引:3
|
作者
Du, Feng [1 ,3 ,4 ]
Mao, Jing [1 ,2 ,3 ]
Wang, Qiaoling [5 ]
Xia, Changyu [6 ]
Zhao, Yan [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[2] Univ Lisbon, Dept Math, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Jingchu Univ Technol, Sch Math & Phys Sci, Jingmen 448000, Peoples R China
[4] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
[5] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[6] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guandong, Peoples R China
关键词
Neumann eigenvalue problem; Steklov eigenvalue problem; biharmonic operator; eigenvalues; Fourier transform; BOUNDS;
D O I
10.1515/anona-2022-0321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Li-Yau-Kroger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Estimates on the Neumann and Steklov principal eigenvalues of collapsing domains
    Acampora, P.
    Amato, V.
    Cristoforoni, E.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,
  • [2] Optimization of Steklov-Neumann eigenvalues
    Ammaria, Habib
    Imeri, Kthim
    Nigam, Nilima
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 406
  • [3] A comparison between Neumann and Steklov eigenvalues
    Henrot, Antoine
    Michetti, Marco
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (04) : 1405 - 1442
  • [4] Estimates for higher Steklov eigenvalues
    Yang, Liangwei
    Yu, Chengjie
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [5] Shape optimization for low Neumann and Steklov eigenvalues
    Girouard, Alexandre
    Polterovich, Iosif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (04) : 501 - 516
  • [6] Neumann to Steklov eigenvalues: asymptotic and monotonicity results
    Lamberti, Pier Domenico
    Provenzano, Luigi
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 429 - 447
  • [7] Extremal problems for Steklov eigenvalues on annuli
    Xu-Qian Fan
    Luen-Fai Tam
    Chengjie Yu
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1043 - 1059
  • [8] Extremal problems for Steklov eigenvalues on annuli
    Fan, Xu-Qian
    Tam, Luen-Fai
    Yu, Chengjie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1043 - 1059
  • [9] The Neumann problem for the Henon equation, trace inequalities and Steklov eigenvalues
    Gazzini, Marita
    Serra, Enrico
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02): : 281 - 302
  • [10] ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM
    Deng, Yanlin
    Du, Feng
    Hou, Lanbao
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1315 - 1325