Local existence for the d-dimensional magneto-micropolar equations with fractional dissipation in Besov spaces

被引:1
|
作者
Qiu, Hua [1 ]
Xiao, Cuntao [2 ]
Yao, Zheng-an [3 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; local solution; magneto-micropolar equations; uniqueness; DECAY;
D O I
10.1002/mma.9078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the d-dimensional magneto-micropolar equations (d=2$$ d=2 $$ or d=3$$ d=3 $$) with general fractional dissipation. The aim of this paper is to obtain the existence and uniqueness of solutions in the weakest possible inhomogeneous Besov spaces. Using the technical tools of Litttlewood-Paley decomposition and Besov spaces theory, we obtain the local existence in the functional setting of inhomogeneous Besov spaces. Furthermore, such solutions are unique only in 2D case.
引用
收藏
页码:9617 / 9651
页数:35
相关论文
共 50 条