Local existence for the d-dimensional magneto-micropolar equations with fractional dissipation in Besov spaces

被引:1
|
作者
Qiu, Hua [1 ]
Xiao, Cuntao [2 ]
Yao, Zheng-an [3 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; local solution; magneto-micropolar equations; uniqueness; DECAY;
D O I
10.1002/mma.9078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the d-dimensional magneto-micropolar equations (d=2$$ d=2 $$ or d=3$$ d=3 $$) with general fractional dissipation. The aim of this paper is to obtain the existence and uniqueness of solutions in the weakest possible inhomogeneous Besov spaces. Using the technical tools of Litttlewood-Paley decomposition and Besov spaces theory, we obtain the local existence in the functional setting of inhomogeneous Besov spaces. Furthermore, such solutions are unique only in 2D case.
引用
收藏
页码:9617 / 9651
页数:35
相关论文
共 50 条
  • [31] Global existence and decay estimate of solutions to magneto-micropolar fluid equations
    Tan, Zhong
    Wu, Wenpei
    Zhou, Jianfeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) : 4137 - 4169
  • [32] Global well-posedness of three-dimensional magneto-micropolar fluid equations with partial dissipation
    Wang, Yazhou
    Wang, Yuzhu
    APPLICABLE ANALYSIS, 2025, 104 (03) : 501 - 524
  • [33] Existence and Uniqueness of Local Weak Solution of D-Dimensional Fractional Micropolar Rayleigh-Bénard Convection System Without Thermal Diffusion in Besov Space
    Baoquan Yuan
    Taotao Hou
    Acta Applicandae Mathematicae, 2022, 182
  • [34] New regularity criteria for the 3D magneto-micropolar fluid equations in Lorentz spaces
    Li, Zhouyu
    Niu, Pengcheng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 6056 - 6066
  • [35] On the strong solutions of the 3D magneto-micropolar equations
    Cruz, F. W.
    Novais, M. M.
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1963 - 1970
  • [36] Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation
    Lin, Hongxia
    Liu, Sen
    Zhang, Heng
    Sun, Qing
    NONLINEARITY, 2024, 37 (05)
  • [37] Existence and time asymptotic profiles of weak solutions to the nonhomogeneous magneto-micropolar equations
    Wang, Xuewen
    Lei, Keke
    Liu, Chenggang
    Han, Pigong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18044 - 18074
  • [38] Existence and Time Decay for Global Small Solution of 2D Generalized Magneto-Micropolar Equations
    Yana Guo
    Yan Jia
    Bo-Qing Dong
    Acta Applicandae Mathematicae, 2021, 174
  • [39] Existence and Time Decay for Global Small Solution of 2D Generalized Magneto-Micropolar Equations
    Guo, Yana
    Jia, Yan
    Dong, Bo-Qing
    ACTA APPLICANDAE MATHEMATICAE, 2021, 174 (01)
  • [40] A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces
    Zhang, Zujin
    Yao, Zheng-An
    Wang, Xiaofeng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2220 - 2225