Local existence for the d-dimensional magneto-micropolar equations with fractional dissipation in Besov spaces

被引:1
|
作者
Qiu, Hua [1 ]
Xiao, Cuntao [2 ]
Yao, Zheng-an [3 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510642, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov space; local solution; magneto-micropolar equations; uniqueness; DECAY;
D O I
10.1002/mma.9078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the d-dimensional magneto-micropolar equations (d=2$$ d=2 $$ or d=3$$ d=3 $$) with general fractional dissipation. The aim of this paper is to obtain the existence and uniqueness of solutions in the weakest possible inhomogeneous Besov spaces. Using the technical tools of Litttlewood-Paley decomposition and Besov spaces theory, we obtain the local existence in the functional setting of inhomogeneous Besov spaces. Furthermore, such solutions are unique only in 2D case.
引用
收藏
页码:9617 / 9651
页数:35
相关论文
共 50 条
  • [1] A uniqueness result for the d-dimensional magnetohydrodynamics equations with fractional dissipation in Besov spaces
    Qiu, Hua
    Wang, Xia
    Yao, Zheng-an
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 6 (01):
  • [2] Lower and upper bounds of decay to the d-dimensional magneto-micropolar equations
    Niu, Dongjuan
    Shang, Haifeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (12)
  • [3] Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation
    Wang, Yazhou
    Wang, Yuzhu
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4416 - 4432
  • [4] Global regularity for d-dimensional micropolar equations with fractional dissipation
    Shang, Haifeng
    Li, Ming
    APPLICABLE ANALYSIS, 2019, 98 (09) : 1567 - 1580
  • [5] Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces
    Baoquan Yuan
    Xiao Li
    Acta Applicandae Mathematicae, 2019, 163 : 207 - 223
  • [6] Global regularity of the 3D magneto-micropolar equations with fractional dissipation
    Jia, Yan
    Xie, Qianqian
    Dong, Bo-Qing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [7] Global regularity of the 3D magneto-micropolar equations with fractional dissipation
    Yan Jia
    Qianqian Xie
    Bo-Qing Dong
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [8] Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces
    Yuan, Baoquan
    Li, Xiao
    ACTA APPLICANDAE MATHEMATICAE, 2019, 163 (01) : 207 - 223
  • [9] Global regularity for the 2D magneto-micropolar equations with partial and fractional dissipation
    Yuan, Baoquan
    Qiao, Yuanyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2345 - 2359
  • [10] The 2D magneto-micropolar equations with partial dissipation
    Regmi, Dipendra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (12) : 4305 - 4317