Distributional finite-difference modelling of seismic waves

被引:10
|
作者
Masson, Yder [1 ,2 ]
机构
[1] Ctr Rech Bordeaux Sud Ouest, Inria, Mag 3D, F-33405 Talence, Aquitaine, France
[2] Univ Pau & Pays Adour, CNRS, LFCR, UMR5150,E2S UPPA, F-64000 Pau, France
关键词
Numerical modelling; Computational seismology; Wave propagation; DISCONTINUOUS GALERKIN METHOD; SPECTRAL ELEMENT METHOD; SYNTHETIC SEISMOGRAMS; PROPAGATION SIMULATION; ADJOINT TOMOGRAPHY; MESH REFINEMENT; PARTS OPERATORS; SUMMATION; ACCURACY; SCHEMES;
D O I
10.1093/gji/ggac306
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This study introduces a distributional finite-difference method (DFDM) for modelling the propagation of elastic waves in heterogeneous media in the time domain. DFDM decomposes the modelling domain into multiple elements that can have arbitrary sizes. When large elements are used, the proposed method closely resembles the finite-difference method because the wavefield is updated using operations involving band diagonal matrices only. Thus DFDM is computationally efficient. When smaller elements are used, DFDM looks closer to the finite-element or the spectral element methods and permits to mesh complicated structures. A complete multidomain algorithm for modelling elastic wave propagation in arbitrarily heterogeneous media is presented. The algorithm's stability is discussed, and the usual Courant condition governs the stability of the proposed scheme. Numerical examples show that the proposed algorithm accurately accounts for free surfaces, solid-fluid interfaces and accommodates non-conformal meshes in their basic form. Seismograms obtained using the proposed method are compared to those computed using analytical solutions and the spectral element method. To achieve comparable accuracy, DFDM requires fewer points per wavelength than the spectral element method, for example.
引用
收藏
页码:264 / 296
页数:33
相关论文
共 50 条
  • [41] Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes
    Lisitsa, Vadim
    Tcheverda, Vladimir
    Vishnevsky, Dmitry
    COMPUTATIONAL GEOSCIENCES, 2012, 16 (04) : 1135 - 1152
  • [42] Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes
    Vadim Lisitsa
    Vladimir Tcheverda
    Dmitry Vishnevsky
    Computational Geosciences, 2012, 16 : 1135 - 1152
  • [43] Finite-difference modelling to evaluate seismic P-wave and shear-wave field data
    Burschil, T.
    Beilecke, T.
    Krawczyk, C. M.
    SOLID EARTH, 2015, 6 (01) : 33 - 47
  • [44] Stable optimization of finite-difference operators for seismic wave modeling
    Wang, Jian
    Hong, Liu
    STUDIA GEOPHYSICA ET GEODAETICA, 2020, 64 (04) : 452 - 464
  • [45] Seismic finite-difference modeling with spatially varying time steps
    Tessmer, E
    GEOPHYSICS, 2000, 65 (04) : 1290 - 1293
  • [46] A program for seismic wavefield modeling using finite-difference techniques
    Keiswetter, D
    Black, R
    Schmeissner, C
    COMPUTERS & GEOSCIENCES, 1996, 22 (03) : 267 - 286
  • [47] Optimized finite-difference operator for broadband seismic wave modeling
    Zhang, Jin-Hai
    Yao, Zhen-Xing
    GEOPHYSICS, 2013, 78 (01) : A13 - A18
  • [48] 2-D seismic wave propagation using the distributional finite-difference method: further developments and potential for global seismology
    Masson, Yder
    Lyu, Chao
    Moczo, Peter
    Capdeville, Yann
    Romanowicz, Barbara
    Virieux, Jean
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (01) : 339 - 363
  • [49] Optimizing Finite-Difference Operator in Seismic Wave Numerical Modeling
    Li, Hui
    Fang, Yuan
    Huang, Zhiguo
    Zhang, Mengyao
    Wei, Qing
    ALGORITHMS, 2022, 15 (04)