Distributional finite-difference modelling of seismic waves

被引:10
|
作者
Masson, Yder [1 ,2 ]
机构
[1] Ctr Rech Bordeaux Sud Ouest, Inria, Mag 3D, F-33405 Talence, Aquitaine, France
[2] Univ Pau & Pays Adour, CNRS, LFCR, UMR5150,E2S UPPA, F-64000 Pau, France
关键词
Numerical modelling; Computational seismology; Wave propagation; DISCONTINUOUS GALERKIN METHOD; SPECTRAL ELEMENT METHOD; SYNTHETIC SEISMOGRAMS; PROPAGATION SIMULATION; ADJOINT TOMOGRAPHY; MESH REFINEMENT; PARTS OPERATORS; SUMMATION; ACCURACY; SCHEMES;
D O I
10.1093/gji/ggac306
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This study introduces a distributional finite-difference method (DFDM) for modelling the propagation of elastic waves in heterogeneous media in the time domain. DFDM decomposes the modelling domain into multiple elements that can have arbitrary sizes. When large elements are used, the proposed method closely resembles the finite-difference method because the wavefield is updated using operations involving band diagonal matrices only. Thus DFDM is computationally efficient. When smaller elements are used, DFDM looks closer to the finite-element or the spectral element methods and permits to mesh complicated structures. A complete multidomain algorithm for modelling elastic wave propagation in arbitrarily heterogeneous media is presented. The algorithm's stability is discussed, and the usual Courant condition governs the stability of the proposed scheme. Numerical examples show that the proposed algorithm accurately accounts for free surfaces, solid-fluid interfaces and accommodates non-conformal meshes in their basic form. Seismograms obtained using the proposed method are compared to those computed using analytical solutions and the spectral element method. To achieve comparable accuracy, DFDM requires fewer points per wavelength than the spectral element method, for example.
引用
收藏
页码:264 / 296
页数:33
相关论文
共 50 条
  • [21] FINITE-DIFFERENCE SIMULATION OF NONLINEAR SHIP WAVES
    MIYATA, H
    NISHIMURA, S
    JOURNAL OF FLUID MECHANICS, 1985, 157 (AUG) : 327 - 357
  • [22] FINITE-DIFFERENCE REPRESENTATIONS OF NONLINEAR-WAVES
    PEDERSEN, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1991, 13 (06) : 671 - 690
  • [23] Finite-difference modelling of borehole georadar data
    Holliger, K
    Bergmann, T
    GPR 2000: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2000, 4084 : 836 - 841
  • [24] Efficient Finite-Difference Multi-Scheme Approach to the Simulation of Seismic Waves in Anisotropic Media
    Vishnevsky, D. M.
    Lisitsa, V. V.
    Tcheverda, V. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2012, 5 (02) : 144 - 149
  • [25] Multi-component seismic-resolution analysis using finite-difference acquisition modelling
    Strong, Shaun
    Hearn, Steve
    EXPLORATION GEOPHYSICS, 2008, 39 (04) : 189 - 197
  • [26] Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media
    Kalyani, V. K.
    Pallavika
    Chakraborty, S. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 : 133 - 145
  • [27] Implicit finite-difference simulations of seismic wave propagation
    Chu, Chunlei
    Stoffa, Paul L.
    GEOPHYSICS, 2012, 77 (02) : T57 - T67
  • [28] Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling
    Zhang, Zhenguo
    Zhang, Wei
    Li, Hong
    Chen, Xiaofei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 192 (03) : 1179 - 1188
  • [29] A discrete representation of material heterogeneity for the finite-difference modelling of seismic wave propagation in a poroelastic medium
    Moczo, Peter
    Gregor, David
    Kristek, Jozef
    de la Puente, Josep
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (02) : 1072 - 1099
  • [30] FINITE-DIFFERENCE SEISMIC MODELING OF AXIAL MAGMA CHAMBERS
    SWIFT, SA
    DOUGHERTY, ME
    STEPHEN, RA
    GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (12) : 2105 - 2108