STATISTICAL INFERENCE FOR MODELS DRIVEN BY n-TH ORDER FRACTIONAL BROWNIAN MOTION

被引:2
|
作者
Chaouch, Hicham [1 ]
El Maroufy, Hamid [1 ]
El Omari, Mohamed [2 ]
机构
[1] Sultan Mouly Slimane Univ, Fac Sci & Techn, Campus Mghilla,BP 523, BENI MELLAL, Morocco
[2] Chouaib Doukkali Univ, Polydisciplinary Fac Sidi Bennou, BP 299,Jabrane Khalil Jabrane St, El Jadida 24000, Morocco
关键词
n-th order fractional Brownian motion; maximum likelihood estimator; least squares estimator; consistency; asymptotic normality; MAXIMUM-LIKELIHOOD ESTIMATOR;
D O I
10.1090/tpms/1185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. We consider the following stochastic integral equation X(t) = mu t + sigma integral(t)(0) phi(s)dB(H)(n)(s), t >= 0, where phi is a known function and B-H(n) is the n-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both mu and sigma(2), then we formulate explicitly a least squares estimator for mu and an estimator for sigma(2) by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.
引用
收藏
页码:29 / 43
页数:15
相关论文
共 50 条
  • [31] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Maama, Mohamed
    Jasra, Ajay
    Ombao, Hernando
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [32] Stochastic fractional differential inclusion driven by fractional Brownian motion
    Hachemi, Rahma Yasmina Moulay
    Guendouzi, Toufik
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2023, 31 (04) : 303 - 313
  • [33] Numerics for the fractional Langevin equation driven by the fractional Brownian motion
    Peng Guo
    Caibin Zeng
    Changpin Li
    YangQuan Chen
    Fractional Calculus and Applied Analysis, 2013, 16 : 123 - 141
  • [34] Numerics for the fractional Langevin equation driven by the fractional Brownian motion
    Guo, Peng
    Zeng, Caibin
    Li, Changpin
    Chen, YangQuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 123 - 141
  • [35] On limit distributions of estimators in irregular statistical models and a new representation of fractional Brownian motion
    Kordzakhia, Nino E.
    Kutoyants, Yury A.
    Novikov, Alexander A.
    Hin, Lin-Yee
    STATISTICS & PROBABILITY LETTERS, 2018, 139 : 141 - 151
  • [36] A general n-th order spectral transform
    Z. R. Bhatti (Department of Mathematics
    Chinese Journal of Acoustics, 2001, (02) : 184 - 192
  • [37] Spectral numerical models of fractional Brownian motion
    Prigarin, S. M.
    Konstantinov, P. V.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (03) : 279 - 295
  • [38] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [39] Statistical characteristics of queue with fractional Brownian motion input
    Chen, J.
    Bhatia, H. S.
    Addie, R. G.
    Zukerman, M.
    ELECTRONICS LETTERS, 2015, 51 (09) : 699 - 700
  • [40] DERIVATION OF N-TH ORDER CUMULANT SPECTRA
    Trapp, Arvid
    Wolfsteiner, Peter
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 11 - 15