STATISTICAL INFERENCE FOR MODELS DRIVEN BY n-TH ORDER FRACTIONAL BROWNIAN MOTION

被引:2
|
作者
Chaouch, Hicham [1 ]
El Maroufy, Hamid [1 ]
El Omari, Mohamed [2 ]
机构
[1] Sultan Mouly Slimane Univ, Fac Sci & Techn, Campus Mghilla,BP 523, BENI MELLAL, Morocco
[2] Chouaib Doukkali Univ, Polydisciplinary Fac Sidi Bennou, BP 299,Jabrane Khalil Jabrane St, El Jadida 24000, Morocco
关键词
n-th order fractional Brownian motion; maximum likelihood estimator; least squares estimator; consistency; asymptotic normality; MAXIMUM-LIKELIHOOD ESTIMATOR;
D O I
10.1090/tpms/1185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. We consider the following stochastic integral equation X(t) = mu t + sigma integral(t)(0) phi(s)dB(H)(n)(s), t >= 0, where phi is a known function and B-H(n) is the n-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both mu and sigma(2), then we formulate explicitly a least squares estimator for mu and an estimator for sigma(2) by using power variations method. The consistency and asymptotic normality are established for those estimators when the number of observations or the time horizon is sufficiently large.
引用
收藏
页码:29 / 43
页数:15
相关论文
共 50 条
  • [21] JACOBI PROCESSES DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Nguyen Tien Dung
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (03): : 835 - 848
  • [22] Deplay BSDEs driven by fractional Brownian motion
    Aidara, Sadibou
    Sane, Ibrahima
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (01) : 21 - 31
  • [23] Generalized BSDEs driven by fractional Brownian motion
    Janczak-Borkowska, Katarzyna
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (03) : 805 - 811
  • [24] Evolution equations driven by a fractional Brownian motion
    Maslowski, B
    Nualart, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (01) : 277 - 305
  • [25] An integral functional driven by fractional Brownian motion
    Sun, Xichao
    Yan, Litan
    Yu, Xianye
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2249 - 2285
  • [26] Delay BSDEs driven by fractional Brownian motion
    Aidara, Sadibou
    Sane, Ibrahima
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2023, 31 (03) : 273 - 284
  • [27] AVERAGING DYNAMICS DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Hairer, Martin
    Li, Xue-Mei
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1826 - 1860
  • [28] Evolutionary equations driven by fractional brownian motion
    Desch G.
    Londen S.-O.
    Stochastic Partial Differential Equations: Analysis and Computations, 2013, 1 (3) : 424 - 454
  • [29] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Mohamed Maama
    Ajay Jasra
    Hernando Ombao
    Statistics and Computing, 2023, 33
  • [30] DISCRETE-TIME INFERENCE FOR SLOW-FAST SYSTEMS DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Bourguin, Solesne
    Gailus, Siragan
    Spiliopoulos, Konstantinos
    MULTISCALE MODELING & SIMULATION, 2021, 19 (03): : 1333 - 1366