(Strong) Proper vertex connection of some digraphs

被引:1
|
作者
Nie, Kairui [1 ]
Ma, Yingbin [1 ]
Sidorowicz, Ezbieta [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ Zielona Gora, Inst Math, Zielona Gora, Poland
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Properly vertex connected; Strong properly vertex connected; Digraph; Vertex-coloring; RAINBOW CONNECTION; NUMBER;
D O I
10.1016/j.amc.2023.128243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (strong) proper vertex connection number ⃖⃖⃖⃖⃖⃖⃗⃖������������������������(& UGamma;), (������)������������������-number for short, is denoted as the smallest cardinality of colors required to color the digraph & UGamma; so that & UGamma; is (strong) properly vertex connected. The ������������������-number and the ������������������������-number are calculated for some unique classes of digraphs in this paper, along with some fundamental results on these parameters. It is known that the ������������������-number is not exceeding 3 for any strong digraph. For digraphs with ������������������-number not exceeding 2, we provide some sufficient conditions. Furthermore, we prove that the ������������������������-number is at most 3 for any minimal strongly connected digraph, but it can be arbitrarily large for some strong digraphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Vertex Antimagic Total Labeling of Digraphs
    Pandimadevi, J.
    Subbiah, S. P.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (02): : 267 - 277
  • [42] Connectivity of half vertex transitive digraphs
    Chen, Laihuan
    Meng, Jixiang
    Tian, Yingzhi
    Liang, Xiaodong
    Liu, Fengxia
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 316 : 25 - 29
  • [43] The vertex-neighbor-integrity of digraphs
    Guo, Jiangyan
    Vumar, Elkin
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 370 - +
  • [44] NUMBER OF STRONG DIGRAPHS
    WRIGHT, EM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (06): : 948 - &
  • [45] THE VERTEX-RAINBOW CONNECTION NUMBER OF SOME GRAPH OPERATIONS
    Li, Hengzhe
    Ma, Yingbin
    Li, Xueliang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 513 - 530
  • [46] MINIMALLY STRONG DIGRAPHS
    GELLER, DP
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1970, 17 : 15 - &
  • [47] Counting strong digraphs
    Robinson, Robert W.
    Journal of Graph Theory, 1977, 1 (02) : 189 - 190
  • [48] Minimal strong digraphs
    Garcia-Lopez, J.
    Marijuan, C.
    DISCRETE MATHEMATICS, 2012, 312 (04) : 737 - 744
  • [49] Vertex-distinguishing proper edge colourings of some regular graphs
    Rudasova, Janka
    Sotak, Roman
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 795 - 802
  • [50] (Strong) Rainbow Connection Number of Some Graphs
    Zhao, Yan
    Li, Shasha
    ARS COMBINATORIA, 2019, 143 : 289 - 297