(Strong) Proper vertex connection of some digraphs

被引:1
|
作者
Nie, Kairui [1 ]
Ma, Yingbin [1 ]
Sidorowicz, Ezbieta [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ Zielona Gora, Inst Math, Zielona Gora, Poland
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Properly vertex connected; Strong properly vertex connected; Digraph; Vertex-coloring; RAINBOW CONNECTION; NUMBER;
D O I
10.1016/j.amc.2023.128243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (strong) proper vertex connection number ⃖⃖⃖⃖⃖⃖⃗⃖������������������������(& UGamma;), (������)������������������-number for short, is denoted as the smallest cardinality of colors required to color the digraph & UGamma; so that & UGamma; is (strong) properly vertex connected. The ������������������-number and the ������������������������-number are calculated for some unique classes of digraphs in this paper, along with some fundamental results on these parameters. It is known that the ������������������-number is not exceeding 3 for any strong digraph. For digraphs with ������������������-number not exceeding 2, we provide some sufficient conditions. Furthermore, we prove that the ������������������������-number is at most 3 for any minimal strongly connected digraph, but it can be arbitrarily large for some strong digraphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Double vertex digraphs of digraphs
    Gao, Yubin
    Shao, Yanling
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2432 - 2444
  • [22] The strong rainbow vertex-connection of graphs
    Li, Xueliang
    Mao, Yaping
    Shi, Yongtang
    UTILITAS MATHEMATICA, 2014, 93 : 213 - 223
  • [23] On strong proper connection number of cubic graphs
    Huang, Fei
    Yuan, Jinjiang
    DISCRETE APPLIED MATHEMATICS, 2019, 265 : 104 - 119
  • [24] The Proper (Vertex) Connection Numbers of Cubic Graphs1
    Ma, Yingbin
    Chen, Lily
    Li, Hengzhe
    Li, Haifeng
    UTILITAS MATHEMATICA, 2017, 102 : 255 - 264
  • [25] Strong Rainbow Vertex-Connection of Cubic Graphs
    Arputhamary, I. Annammal
    Mercy, M. Helda
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [26] ON VERTEX SYMMETRIC DIGRAPHS
    MARUSIC, D
    DISCRETE MATHEMATICS, 1981, 36 (01) : 69 - 81
  • [27] Graphs with Strong Proper Connection Numbers and Large Cliques
    Ma, Yingbin
    Zhang, Xiaoxue
    Xue, Yanfeng
    AXIOMS, 2023, 12 (04)
  • [28] The Vertex Distance on Cayley Digraphs of Rectangular Groups with respect to the Cartesian Product Connection Sets
    Pongpipat, Denpong
    Nupo, Nuttawoot
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2025, 20 (01): : 123 - 130
  • [29] A classification of vertex-transitive Cayley digraphs of strong semilattices of completely simple semigroups
    Wang, Shou-feng
    Zhang, Di
    MATHEMATICA SLOVACA, 2012, 62 (05) : 829 - 840
  • [30] Large vertex symmetric digraphs
    Gomez, J.
    NETWORKS, 2007, 50 (04) : 241 - 250