(Strong) Proper vertex connection of some digraphs

被引:1
|
作者
Nie, Kairui [1 ]
Ma, Yingbin [1 ]
Sidorowicz, Ezbieta [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ Zielona Gora, Inst Math, Zielona Gora, Poland
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Properly vertex connected; Strong properly vertex connected; Digraph; Vertex-coloring; RAINBOW CONNECTION; NUMBER;
D O I
10.1016/j.amc.2023.128243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The (strong) proper vertex connection number ⃖⃖⃖⃖⃖⃖⃗⃖������������������������(& UGamma;), (������)������������������-number for short, is denoted as the smallest cardinality of colors required to color the digraph & UGamma; so that & UGamma; is (strong) properly vertex connected. The ������������������-number and the ������������������������-number are calculated for some unique classes of digraphs in this paper, along with some fundamental results on these parameters. It is known that the ������������������-number is not exceeding 3 for any strong digraph. For digraphs with ������������������-number not exceeding 2, we provide some sufficient conditions. Furthermore, we prove that the ������������������������-number is at most 3 for any minimal strongly connected digraph, but it can be arbitrarily large for some strong digraphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] (Strong) Proper Connection in Some Digraphs
    Ma, Yingbin
    Nie, Kairui
    IEEE ACCESS, 2019, 7 : 69692 - 69697
  • [2] (Strong) Total proper connection of some digraphs
    Yingbin Ma
    Kairui Nie
    Journal of Combinatorial Optimization, 2021, 42 : 24 - 39
  • [3] (Strong) Total proper connection of some digraphs
    Ma, Yingbin
    Nie, Kairui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (01) : 24 - 39
  • [4] Proper (Strong) Rainbow Connection and Proper (Strong) Rainbow Vertex Connection of Some Special Graphs
    Ma, Yingbin
    Xue, Yanfeng
    Zhang, Xiaoxue
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (03)
  • [5] Some results on (strong) total proper connection number of some digraphs
    Ma, Yingbin
    Wang, Mingli
    Zhao, Wei
    Nie, Kairui
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 44 - 56
  • [6] On (Strong) Proper Vertex-Connection of Graphs
    Jiang, Hui
    Li, Xueliang
    Zhang, Yingying
    Zhao, Yan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 415 - 425
  • [7] Proper (Strong) Rainbow Connection and Proper (Strong) Rainbow Vertex Connection of Graphs with Large Clique Number
    Ma, Yingbin
    Xue, Yanfeng
    Zhang, Xiaoxue
    JOURNAL OF INTERCONNECTION NETWORKS, 2025, 25 (01)
  • [8] Proper connection and proper-walk connection of digraphs
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    Sopena, Eric
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410 (410)
  • [9] Rainbow vertex connection of digraphs
    Hui Lei
    Shasha Li
    Henry Liu
    Yongtang Shi
    Journal of Combinatorial Optimization, 2018, 35 : 86 - 107
  • [10] Rainbow vertex connection of digraphs
    Lei, Hui
    Li, Shasha
    Liu, Henry
    Shi, Yongtang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 86 - 107