Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery

被引:14
|
作者
Anandhakumar, C. [1 ]
Murugan, N. S. Sakthivel [2 ]
Kumaresan, K. [3 ]
机构
[1] Sri Ramakrishna Inst Technol, Dept EEE, Coimbatore 641010, Tamil Nadu, India
[2] Pk Coll Engn & Technol, Dept CSE, Kaniyur 641659, Tamil Nadu, India
[3] Pk Coll Engn & Technol, Dept Mech, Kaniyur 641659, Tamil Nadu, India
关键词
Battery management systems; State-Of-Charge; Extreme Learning Machine; Honey Badger Optimization; Lithium ion battery;
D O I
10.1016/j.eswa.2023.121609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate state-of-charge (SOC) detection was still a challenging task to complete due to complex battery dynamics and constantly changing external conditions. The formula for SOC was difficult to determine since external parameters including voltage, current, temperature, and battery arrangement were complex. Also the methods for estimating SOC that were already in use were not always appropriate for the same car operating in various road and climatic conditions. In all situations, the conventional methodologies did not deliver an accurate estimation performance. Here, a unique optimization-based Extreme Learning Machine (ELM) was created to accurately determine a battery's SOC and enhance the operation and safety of battery systems. A lithium ion battery was first created, and data on its current, voltage, SOC, capacity, duration, and discharge rate were gathered to produce a real-time dataset at several temperatures, including 0(degrees), 25(degrees) and 45(degrees). The dataset underwent additional pre-processing to standardize the values and enhance the accuracy of the data. To determine the precise state of the battery, these pre-data were loaded into the ELM model. However, the performance of ELM was significantly influenced by the length of training and the number of neurons in a hidden layer. An advanced Honey Badger Optimization Algorithm (HBA) was used to choose the appropriate hidden neurons and increase the estimation accuracy in order to overcome this problem. The proposed SOC estimation model provides 97% accuracy in the FUDS drive cycle and 99% accuracy in the US06 drive cycle. The proposed model provides a well performance for estimating SOC in lithium-ion battery at various temperature, also the proposed model was fit for real time implementation.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Simplified Mode Based State-of-Charge Estimation Approach for Lithium-Ion Battery With Dynamic Linear Model
    Meng, Jinhao
    Stroe, Daniel-Ioan
    Ricco, Mattia
    Luo, Guangzhao
    Teodorescu, Remus
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (10) : 7717 - 7727
  • [32] Iterative Learning Based Model Identification and State of Charge Estimation of Lithium-Ion Battery
    Zhu, Qiao
    Xu, Meng'en
    Zheng, Meng'qian
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 222 - 228
  • [33] Application of dual extended Kalman filtering algorithm in the state-of-charge estimation of lithium-ion battery
    Wang, Xiaotian
    Yang, Zhijia
    Wang, Yingnan
    Wang, Zhongfeng
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (08): : 1732 - 1738
  • [34] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    ENERGY, 2021, 236
  • [35] An estimation method for the state-of-charge of lithium-ion battery based on PSO-LSTM
    Dang, Meng
    Zhang, Chuanwei
    Yang, Zhi
    Wang, Jianlong
    Li, Yikun
    Huang, Jing
    AIP ADVANCES, 2023, 13 (11)
  • [36] Lithium-ion battery State-of-Charge estimation based on an improved Coulomb-Counting algorithm and uncertainty evaluation
    Mohammadi, Fazel
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [37] State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification
    Zhao, Xiaobo
    Qian, Xiao
    Xuan, Dongji
    Jung, Seunghun
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [38] Improved Deep Extreme Learning Machine for State of Health Estimation of Lithium-Ion Battery
    Chen, Yan
    Meng, Junli
    Ming, Shunyang
    Tong, Gengxin
    Qi, Ziyi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [39] State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model
    Wang, Baojin
    Liu, Zhiyuan
    Li, Shengbo Eben
    Moura, Scott Jason
    Peng, Huei
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (01) : 3 - 11
  • [40] Online State-of-Charge Estimation for Lithium-ion Batteries Based on the ARX Model
    Nie W.
    Tan W.
    Qiu G.
    Li C.
    Nie X.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2018, 38 (18): : 5415 - 5424