Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery

被引:14
|
作者
Anandhakumar, C. [1 ]
Murugan, N. S. Sakthivel [2 ]
Kumaresan, K. [3 ]
机构
[1] Sri Ramakrishna Inst Technol, Dept EEE, Coimbatore 641010, Tamil Nadu, India
[2] Pk Coll Engn & Technol, Dept CSE, Kaniyur 641659, Tamil Nadu, India
[3] Pk Coll Engn & Technol, Dept Mech, Kaniyur 641659, Tamil Nadu, India
关键词
Battery management systems; State-Of-Charge; Extreme Learning Machine; Honey Badger Optimization; Lithium ion battery;
D O I
10.1016/j.eswa.2023.121609
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate state-of-charge (SOC) detection was still a challenging task to complete due to complex battery dynamics and constantly changing external conditions. The formula for SOC was difficult to determine since external parameters including voltage, current, temperature, and battery arrangement were complex. Also the methods for estimating SOC that were already in use were not always appropriate for the same car operating in various road and climatic conditions. In all situations, the conventional methodologies did not deliver an accurate estimation performance. Here, a unique optimization-based Extreme Learning Machine (ELM) was created to accurately determine a battery's SOC and enhance the operation and safety of battery systems. A lithium ion battery was first created, and data on its current, voltage, SOC, capacity, duration, and discharge rate were gathered to produce a real-time dataset at several temperatures, including 0(degrees), 25(degrees) and 45(degrees). The dataset underwent additional pre-processing to standardize the values and enhance the accuracy of the data. To determine the precise state of the battery, these pre-data were loaded into the ELM model. However, the performance of ELM was significantly influenced by the length of training and the number of neurons in a hidden layer. An advanced Honey Badger Optimization Algorithm (HBA) was used to choose the appropriate hidden neurons and increase the estimation accuracy in order to overcome this problem. The proposed SOC estimation model provides 97% accuracy in the FUDS drive cycle and 99% accuracy in the US06 drive cycle. The proposed model provides a well performance for estimating SOC in lithium-ion battery at various temperature, also the proposed model was fit for real time implementation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Lithium-ion battery state-of-charge estimation strategy for industrial applications
    Chen, Zilong
    Liao, Wenjun
    Li, Pingfei
    Tan, Jinhui
    Chen, Yuping
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2024, 177 (01) : 14 - 21
  • [22] State-of-Charge Estimation for Lithium-ion Battery Using AUKF and LSSVM
    Meng, Jinhao
    Luo, Guangzhao
    Gao, Fei
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [23] Lithium-ion battery state-of-charge estimation strategy for industrial applications
    Chen Z.
    Tan J.
    Liao W.
    Chen Y.
    Li P.
    Proceedings of Institution of Civil Engineers: Energy, 2023, 177 (01): : 14 - 21
  • [24] State-of-charge estimation with aging effect and correction for lithium-ion battery
    Cheng, Ming-Wang
    Lee, Yuang-Shung
    Liu, Min
    Sun, Chein-Chung
    IET ELECTRICAL SYSTEMS IN TRANSPORTATION, 2015, 5 (02) : 70 - 76
  • [25] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [26] Lithium-Ion Battery State of Health Estimation Based on Improved Deep Extreme Learning Machine
    Zhang, Yu
    Zeng, Wanwan
    Chang, Chun
    Wang, Qiyue
    Xu, Si
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (03)
  • [27] A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles
    Kim, Woo-Yong
    Lee, Pyeong-Yeon
    Kim, Jonghoon
    Kim, Kyung-Soo
    ENERGIES, 2019, 12 (17)
  • [28] Iterative learning based model identification and state of charge estimation of lithium-ion battery
    Zhu, Qiao
    Chen, Jun-Xiong
    Xu, Meng-En
    Zou, Chen
    IET POWER ELECTRONICS, 2019, 12 (04) : 852 - 860
  • [29] State-of-charge Estimation of Lithium-ion Polymer Battery Based on Sliding Mode Observer
    Mao Jun
    Zhao Linhui
    Lin Yurong
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 269 - 273
  • [30] State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network
    Feng, Xiong
    Chen, Junxiong
    Zhang, Zhongwei
    Miao, Shuwen
    Zhu, Qiao
    Energy, 2021, 236