Spatial deformable transformer for 3D point cloud registration

被引:2
|
作者
Xiong, Fengguang [1 ,2 ,3 ]
Kong, Yu [2 ]
Xie, Shuaikang [2 ]
Kuang, Liqun [1 ,2 ,3 ]
Han, Xie [1 ,2 ,3 ]
机构
[1] Shanxi Prov Key Lab Machine Vis & Virtual Real, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Comp Sci & Technol, Taiyuan 030051, Peoples R China
[3] Shanxi Prov Vis Informat Proc & Intelligent Robot, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
HISTOGRAMS;
D O I
10.1038/s41598-024-56217-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deformable attention only focuses on a small group of key sample-points around the reference point and make itself be able to capture dynamically the local features of input feature map without considering the size of the feature map. Its introduction into point cloud registration will be quicker and easier to extract local geometric features from point cloud than attention. Therefore, we propose a point cloud registration method based on Spatial Deformable Transformer (SDT). SDT consists of a deformable self-attention module and a cross-attention module where the deformable self-attention module is used to enhance local geometric feature representation and the cross-attention module is employed to enhance feature discriminative capability of spatial correspondences. The experimental results show that compared to state-of-the-art registration methods, SDT has a better matching recall, inlier ratio, and registration recall on 3DMatch and 3DLoMatch scene, and has a better generalization ability and time efficiency on ModelNet40 and ModelLoNet40 scene.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] 3D point cloud object detection algorithm based on Transformer
    Liu M.
    Yang Q.
    Hu G.
    Guo Y.
    Zhang J.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2023, 41 (06): : 1190 - 1197
  • [42] Local Transformer Network on 3D Point Cloud Semantic Segmentation
    Wang, Zijun
    Wang, Yun
    An, Lifeng
    Liu, Jian
    Liu, Haiyang
    INFORMATION, 2022, 13 (04)
  • [43] Transformer Enhanced Hierarchical 3D Point Cloud Semantic Segmentation
    Liu, Yaohua
    Ma, Yue
    Xu, Min
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [44] Bridged Transformer for Vision and Point Cloud 3D Object Detection
    Wang, Yikai
    Ye, TengQi
    Cao, Lele
    Huang, Wenbing
    Sun, Fuchun
    He, Fengxiang
    Tao, Dacheng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12104 - 12113
  • [45] A Fast Coherent Point Drift Method for Rigid 3D Point Cloud Registration
    School of Automation, Beijing Institute of Technology, Beijing
    100081, China
    不详
    401147, China
    Chinese Control Conf., CCC, 1934, (7776-7781): : 7776 - 7781
  • [46] Point-voxel dual stream transformer for 3d point cloud learning
    Zhao, Tianmeng
    Zeng, Hui
    Zhang, Baoqing
    Fan, Bin
    Li, Chen
    VISUAL COMPUTER, 2024, 40 (08): : 5323 - 5339
  • [47] 3D LiDAR-Based Point Cloud Map Registration Using Spatial Location of Visual Features
    Shin, Minhwan
    Kim, Jaeseung
    Jeong, Jongmin
    Park, Jin Bae
    2017 2ND INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING (ICRAE), 2017, : 373 - 378
  • [48] F-Transformer: Point Cloud Fusion Transformer for Cooperative 3D Object Detection
    Wang, Jie
    Luo, Guiyang
    Yuan, Quan
    Li, Jinglin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I, 2022, 13529 : 171 - 182
  • [49] PointRegGPT: Boosting 3D Point Cloud Registration Using Generative Point-Cloud Pairs for Training
    Chen, Suyi
    Xu, Hao
    Li, Haipeng
    Luo, Kunming
    Liu, Guanghui
    Fu, Chi-Wing
    Tan, Ping
    Li, Shuaicheng
    COMPUTER VISION - ECCV 2024, PT LI, 2025, 15109 : 272 - 289
  • [50] Improved Iterative Closest Point(ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration
    Shi, Xiaojing
    Liu, Tao
    Han, Xie
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (08) : 3197 - 3220