Spatial deformable transformer for 3D point cloud registration

被引:2
|
作者
Xiong, Fengguang [1 ,2 ,3 ]
Kong, Yu [2 ]
Xie, Shuaikang [2 ]
Kuang, Liqun [1 ,2 ,3 ]
Han, Xie [1 ,2 ,3 ]
机构
[1] Shanxi Prov Key Lab Machine Vis & Virtual Real, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Comp Sci & Technol, Taiyuan 030051, Peoples R China
[3] Shanxi Prov Vis Informat Proc & Intelligent Robot, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
HISTOGRAMS;
D O I
10.1038/s41598-024-56217-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deformable attention only focuses on a small group of key sample-points around the reference point and make itself be able to capture dynamically the local features of input feature map without considering the size of the feature map. Its introduction into point cloud registration will be quicker and easier to extract local geometric features from point cloud than attention. Therefore, we propose a point cloud registration method based on Spatial Deformable Transformer (SDT). SDT consists of a deformable self-attention module and a cross-attention module where the deformable self-attention module is used to enhance local geometric feature representation and the cross-attention module is employed to enhance feature discriminative capability of spatial correspondences. The experimental results show that compared to state-of-the-art registration methods, SDT has a better matching recall, inlier ratio, and registration recall on 3DMatch and 3DLoMatch scene, and has a better generalization ability and time efficiency on ModelNet40 and ModelLoNet40 scene.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] METHOD OF REGISTRATION FOR 3D FACE POINT CLOUD DATA
    Sidik, Mohd Kufaisal Mohd
    Sunar, Mohd Shahrizal
    Zamri, Muhamad Najib
    JURNAL TEKNOLOGI, 2015, 75 (02): : 83 - 88
  • [22] 3D Body Point Cloud Data Denoising and Registration
    Li, Xiaozhi
    Li, Xiaojiu
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 587 - 590
  • [23] Rigid 3D Point Cloud Registration Based on Point Feature Histograms
    Wang, Xi
    Zhang, Xutang
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MACHINERY, ELECTRONICS AND CONTROL SIMULATION (MECS 2017), 2017, 138 : 543 - 550
  • [24] A Modified Iterative Closest Point Algorithm for 3D Point Cloud Registration
    Marani, Roberto
    Reno, Vito
    Nitti, Massimiliano
    D'Orazio, Tiziana
    Stella, Ettore
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2016, 31 (07) : 515 - 534
  • [25] Optimization of ICP point cloud registration in plants 3D modeling
    Lu J.
    Lan Y.
    Wu Z.
    Liang X.
    Chang H.
    Deng X.
    Wu Z.
    Tang Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (02): : 183 - 191
  • [26] An effective approach for 3D point cloud registration in railway contexts
    Patruno, Cosimo
    Colella, Roberto
    Nitti, Massimiliano
    Stella, Ettore
    MULTIMODAL SENSING: TECHNOLOGIES AND APPLICATIONS, 2019, 11059
  • [27] CorsNet: 3D Point Cloud Registration by Deep Neural Network
    Kurobe, Akiyoshi
    Sekikawa, Yusuke
    Ishikawa, Kohta
    Saito, Hideo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 3960 - 3966
  • [28] A 3D Point Cloud Registration Algorithm based on Feature Points
    Ren, Yi
    Zhou, Fucai
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCES, MACHINERY, MATERIALS AND ENERGY (ICISMME 2015), 2015, 126 : 803 - 807
  • [29] Efficient multi-scale 3D point cloud registration
    Tang, Zhijie
    Meng, Ke
    COMPUTING, 2025, 107 (01)
  • [30] A fast and robust local descriptor for 3D point cloud registration
    Yang, Jiaqi
    Cao, Zhiguo
    Zhang, Qian
    INFORMATION SCIENCES, 2016, 346 : 163 - 179