Multi-view unsupervised complementary feature selection with multi-order similarity learning

被引:12
|
作者
Cao, Zhiwen
Xie, Xijiong [1 ]
机构
[1] Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Latent representation; Multi-order similarity learning; Multi-view unsupervised feature selection; Random walk; HYBRID NEURAL-NETWORK; OPTIMIZATION ALGORITHM; ADAPTIVE SIMILARITY; LOW-RANK; GRAPH; SCALE;
D O I
10.1016/j.knosys.2023.111172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph construction, an open and challenging problem, is of great significance for multi-view unsupervised feature selection. So far, many graph construction methods, such as distance-based (the local structure) and self-reconstruction-based (the global structure), have been devised to serve the feature selection task. Although these methods have achieved some improvements, they fail to utilize high-order neighbor information, let alone exploit the neighbor information of different orders, to improve the feature selection task. In this paper, we propose a new insight to construct graphs that can accommodate multi-order neighbor information for selecting the relevant features. Besides, we observe that existing methods adopts the general information fusion strategy in multi-view learning, e.g. fusing graphs, without taking into account the unique characteristics of the feature selection task. Therefore, the proposed method seeks to project multi-view data onto a shared latent representation, which explores the complementarity tailored to the feature selection task at the feature level. A simple yet effective algorithm is designed to solve the optimization problem of the objective function. Extensive clustering experiments demonstrate the superiority of our method over state-of-the-art ones.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Robust Multi-View Feature Selection
    Liu, Hongfu
    Mao, Haiyi
    Fu, Yun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 281 - 290
  • [42] Cross-View Local Structure Preserved Diversity and Consensus Learning for Multi-View Unsupervised Feature Selection
    Tang, Chang
    Zhu, Xinzhong
    Liu, Xinwang
    Wang, Lizhe
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5101 - 5108
  • [43] Multi-view subspace clustering based on multi-order neighbor diffusion
    Long, Yin
    Xu, Hongbin
    Xiang, Yang
    Du, Xiyu
    Yang, Yanying
    Zhao, Xujian
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (05) : 7143 - 7161
  • [44] Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection
    Hsieh, Tsung-Yu
    Sun, Yiwei
    Wang, Suhang
    Honavar, Vasant
    2019 10TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK 2019), 2019, : 87 - 96
  • [45] Unsupervised feature selection via distributed coding for multi-view object recognition
    Christoudias, C. Mario
    Urtasun, Raquel
    Darrell, Trevor
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2126 - +
  • [46] Multi-view Unsupervised Feature Selection by Cross-diffused Matrix Alignment
    Wei, Xiaokai
    Cao, Bokai
    Yu, Philip S.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 494 - 501
  • [47] Multi-view unsupervised feature selection with tensor low-rank minimization
    Yuan, Haoliang
    Li, Junyu
    Liang, Yong
    Tang, Yuan Yan
    NEUROCOMPUTING, 2022, 487 : 75 - 85
  • [48] Multilevel projections with adaptive neighbor graph for unsupervised multi-view feature selection
    Zhang, Han
    Wu, Danyang
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    INFORMATION FUSION, 2021, 70 : 129 - 140
  • [49] Self-paced regularized adaptive multi-view unsupervised feature selection
    Yang, Xuanhao
    Che, Hangjun
    Leung, Man-Fai
    Wen, Shiping
    NEURAL NETWORKS, 2024, 175
  • [50] Multi-view unsupervised feature selection with tensor robust principal component analysis and consensus graph learning
    Liang, Cheng
    Wang, Lianzhi
    Liu, Li
    Zhang, Huaxiang
    Guo, Fei
    PATTERN RECOGNITION, 2023, 141