Multi-view unsupervised complementary feature selection with multi-order similarity learning

被引:12
|
作者
Cao, Zhiwen
Xie, Xijiong [1 ]
机构
[1] Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Latent representation; Multi-order similarity learning; Multi-view unsupervised feature selection; Random walk; HYBRID NEURAL-NETWORK; OPTIMIZATION ALGORITHM; ADAPTIVE SIMILARITY; LOW-RANK; GRAPH; SCALE;
D O I
10.1016/j.knosys.2023.111172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph construction, an open and challenging problem, is of great significance for multi-view unsupervised feature selection. So far, many graph construction methods, such as distance-based (the local structure) and self-reconstruction-based (the global structure), have been devised to serve the feature selection task. Although these methods have achieved some improvements, they fail to utilize high-order neighbor information, let alone exploit the neighbor information of different orders, to improve the feature selection task. In this paper, we propose a new insight to construct graphs that can accommodate multi-order neighbor information for selecting the relevant features. Besides, we observe that existing methods adopts the general information fusion strategy in multi-view learning, e.g. fusing graphs, without taking into account the unique characteristics of the feature selection task. Therefore, the proposed method seeks to project multi-view data onto a shared latent representation, which explores the complementarity tailored to the feature selection task at the feature level. A simple yet effective algorithm is designed to solve the optimization problem of the objective function. Extensive clustering experiments demonstrate the superiority of our method over state-of-the-art ones.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Online unsupervised multi-view feature selection with adaptive neighbors
    Ai, Yihao
    Zhong, Guo
    Chen, Tingjian
    Yuan, Haoliang
    Lai, Loi Lei
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2025, 23 (01)
  • [22] Unsupervised Multi-View Feature Selection for Tumor Subtype Identification
    Imangaliyev, Sultan
    Levin, Evgeni
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 491 - 499
  • [23] Unsupervised Multi-view Learning
    Huang, Ling
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6442 - 6443
  • [24] C2IMUFS: Complementary and Consensus Learning-Based Incomplete Multi-View Unsupervised Feature Selection
    Huang, Yanyong
    Shen, Zongxin
    Cai, Yuxin
    Yi, Xiuwen
    Wang, Dongjie
    Lv, Fengmao
    Li, Tianrui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10681 - 10694
  • [25] Unsupervised multi-view feature extraction with dynamic graph learning
    Shi, Dan
    Zhu, Lei
    Cheng, Zhiyong
    Li, Zhihui
    Zhang, Huaxiang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 256 - 264
  • [26] Robust Unsupervised Multi-View Feature Learning With Dynamic Graph
    Li, Yikun
    Liu, Li
    Shi, Dan
    Cui, Hui
    Lu, Xu
    IEEE ACCESS, 2019, 7 : 72197 - 72209
  • [27] Semi-supervised multi-view feature selection with adaptive similarity fusion and learning
    Jiang, Bingbing
    Liu, Jun
    Wang, Zidong
    Zhang, Chenglong
    Yang, Jie
    Wang, Yadi
    Sheng, Weiguo
    Ding, Weiping
    PATTERN RECOGNITION, 2025, 159
  • [28] Dual-level feature assessment for unsupervised multi-view feature selection with latent space learning
    Wu, Jian-Sheng
    Gong, Jun-Xiao
    Liu, Jing-Xin
    Huang, Wei
    Zheng, Wei-Shi
    INFORMATION SCIENCES, 2024, 670
  • [29] Cross-View Locality Preserved Diversity and Consensus Learning for Multi-View Unsupervised Feature Selection
    Tang, Chang
    Zheng, Xiao
    Liu, Xinwang
    Zhang, Wei
    Zhang, Jing
    Xiong, Jian
    Wang, Lizhe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) : 4705 - 4716
  • [30] Multi-level regularization-based unsupervised multi-view feature selection with adaptive graph learning
    Tingjian Chen
    Ying Zeng
    Haoliang Yuan
    Guo Zhong
    Loi Lei Lai
    Yuan Yan Tang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1695 - 1709