Subgap states and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures

被引:0
|
作者
Feijoo, Javier [1 ,2 ]
Iucci, Anibal [1 ,2 ]
Lobos, Alejandro M. [3 ,4 ,5 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Inst Fis La Plata, Diag 113 & 64, RA-1900 La Plata, Argentina
[2] Univ Nacl La Plata, Dept Fis, Cc 67, RA-1900 La Plata, Argentina
[3] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
[4] Consejo Nacl Invest Cient & Tecn, RA-5500 Mendoza, Argentina
[5] UNCuyo, CONICET, Inst Interdisciplinario Ciencias Basicas, RA-5500 Mendoza, Argentina
关键词
D O I
10.1103/PhysRevB.107.214505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically study the spectral properties of a one dimensional semiconductor-superconductor -ferromagnetic insulator (SE-SU-FMI) hybrid nanostructure, motivated by recent experiments where such devices have been fabricated using epitaxial growing techniques. We model the hybrid structure as a one-dimensional single-channel semiconductor nanowire under the simultaneous effect of two proximity-induced interactions: superconducting pairing and a (spatially inhomogeneous) Zeeman exchange field. The coexistence of these competing mechanisms generates a rich quantum phase diagram and a complex subgap Andreev bound state (ABS) spectrum. By exploiting the symmetries of the problem, we classify the solutions of the Bogoliubov-de Gennes equations into even and odd ABS with respect to the spatial inversion symmetry x & RARR; -x. We find the ABS spectrum of the device as a function of the different parameters of the model: the length L of the coexisting SU-FMI region, the induced Zeeman exchange field h0, and the induced superconducting coherence length & xi;. In particular we analyze the evolution of the subgap spectrum as a function of the length L. Interestingly, we generically find spin-polarized ABS emerging in the subgap region, which, depending on the ratio h0/A, can eventually cross below the Fermi energy at certain critical values Lc, and induce spin-and fermion parity -changing quantum phase transitions. We argue that this type of device constitute a promising highly-tunable platform to engineer subgap ABS.
引用
收藏
页数:13
相关论文
共 50 条
  • [42] Bosonization study of quantum phase transitions in the one-dimensional asymmetric Hubbard model
    Wang, Z. G.
    Chen, Y. G.
    Gu, S. J.
    PHYSICAL REVIEW B, 2007, 75 (16)
  • [43] A CLASS OF ONE-DIMENSIONAL MODELS WITH UNIQUE GROUND STATES THAT ADMITS PHASE TRANSITIONS
    Mallak, Saed F.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2005, 3 (02) : 109 - 114
  • [44] Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces
    Corfdir, Pierre
    Li, Hong
    Marquardt, Oliver
    Gao, Guanhui
    Molas, Maciej R.
    Zettler, Johannes K.
    van Treeck, David
    Flissikowski, Timur
    Potemski, Marek
    Draxl, Claudia
    Trampert, Achim
    Fernandez-Garrido, Sergio
    Grahn, Holger T.
    Brandt, Oliver
    NANO LETTERS, 2018, 18 (01) : 247 - 254
  • [45] Phase transitions in one-dimensional nonequilibrium systems
    Evans, MR
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) : 42 - 57
  • [46] Phase transitions in the one-dimensional coulomb medium
    Malyshev, V. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2015, 51 (01) : 31 - 36
  • [47] Signatures of metal-insulator and topological phase transitions in the entanglement of one-dimensional disordered fermions
    Mondragon-Shem, Ian
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2014, 90 (10):
  • [48] Phase transitions in the one-dimensional coulomb medium
    V. A. Malyshev
    Problems of Information Transmission, 2015, 51 : 31 - 36
  • [49] A new method to calculate Berry phase in one-dimensional quantum anomalous Hall insulator
    Liao, Yi
    PHYSICS LETTERS A, 2016, 380 (36) : 2888 - 2891
  • [50] Matrix product state and quantum phase transitions in the one-dimensional extended quantum compass model
    Liu, Guang-Hua
    Li, Wei
    You, Wen-Long
    Tian, Guang-Shan
    Su, Gang
    PHYSICAL REVIEW B, 2012, 85 (18)