Subgap states and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures

被引:0
|
作者
Feijoo, Javier [1 ,2 ]
Iucci, Anibal [1 ,2 ]
Lobos, Alejandro M. [3 ,4 ,5 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Inst Fis La Plata, Diag 113 & 64, RA-1900 La Plata, Argentina
[2] Univ Nacl La Plata, Dept Fis, Cc 67, RA-1900 La Plata, Argentina
[3] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
[4] Consejo Nacl Invest Cient & Tecn, RA-5500 Mendoza, Argentina
[5] UNCuyo, CONICET, Inst Interdisciplinario Ciencias Basicas, RA-5500 Mendoza, Argentina
关键词
D O I
10.1103/PhysRevB.107.214505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically study the spectral properties of a one dimensional semiconductor-superconductor -ferromagnetic insulator (SE-SU-FMI) hybrid nanostructure, motivated by recent experiments where such devices have been fabricated using epitaxial growing techniques. We model the hybrid structure as a one-dimensional single-channel semiconductor nanowire under the simultaneous effect of two proximity-induced interactions: superconducting pairing and a (spatially inhomogeneous) Zeeman exchange field. The coexistence of these competing mechanisms generates a rich quantum phase diagram and a complex subgap Andreev bound state (ABS) spectrum. By exploiting the symmetries of the problem, we classify the solutions of the Bogoliubov-de Gennes equations into even and odd ABS with respect to the spatial inversion symmetry x & RARR; -x. We find the ABS spectrum of the device as a function of the different parameters of the model: the length L of the coexisting SU-FMI region, the induced Zeeman exchange field h0, and the induced superconducting coherence length & xi;. In particular we analyze the evolution of the subgap spectrum as a function of the length L. Interestingly, we generically find spin-polarized ABS emerging in the subgap region, which, depending on the ratio h0/A, can eventually cross below the Fermi energy at certain critical values Lc, and induce spin-and fermion parity -changing quantum phase transitions. We argue that this type of device constitute a promising highly-tunable platform to engineer subgap ABS.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Andreev Bound States in a One-Dimensional Topological Superconductor
    Liu, Xiong-Jun
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [32] Robust spin polarization of Yu-Shiba-Rusinov states in superconductor/ferromagnetic insulator heterostructures
    Skurativska, A.
    Ortuzar, J.
    Bercioux, D.
    Bergeret, F. S.
    Cazalilla, M. A.
    PHYSICAL REVIEW B, 2023, 107 (22)
  • [33] Two-dimensional superconductor-insulator quantum phase transitions in an electron-doped cuprate
    Zeng, S. W.
    Huang, Z.
    Lv, W. M.
    Bao, N. N.
    Gopinadhan, K.
    Jian, L. K.
    Herng, T. S.
    Liu, Z. Q.
    Zhao, Y. L.
    Li, C. J.
    Ma, H. J. Harsan
    Yang, P.
    Ding, J.
    Venkatesan, T.
    Ariando
    PHYSICAL REVIEW B, 2015, 92 (02)
  • [34] Self-duality in superconductor-insulator quantum phase transitions
    Schakel, AMJ
    PHYSICAL REVIEW LETTERS, 2000, 85 (18) : 3934 - 3937
  • [35] A superconductor-insulator transition in a one-dimensional array of Josephson junctions
    Gurarie, V
    Tsvelik, AM
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2004, 135 (3-4) : 245 - 255
  • [36] A Superconductor-Insulator Transition in a One-Dimensional Array of Josephson Junctions
    V. Gurarie
    A. M. Tsvelik
    Journal of Low Temperature Physics, 2004, 135 : 245 - 255
  • [37] Floquet topological transitions in a driven one-dimensional topological insulator
    Dal Lago, V.
    Atala, M.
    Torres, L. E. F. Foa
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [38] Effect of morphology on the superconductor-insulator transition in one-dimensional nanowires
    Bollinger, AT
    Rogachev, A
    Remeika, M
    Bezryadin, A
    PHYSICAL REVIEW B, 2004, 69 (18): : 180503 - 1
  • [39] Quantum phase transitions in composite matrix product states of one-dimensional spin-1/2 chains
    Zhu, Jing-Min
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (09):
  • [40] Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice
    Wang Wei
    Wang Yi-Ping
    ACTA PHYSICA SINICA, 2022, 71 (19)