Techno-economic and carbon dioxide emission assessment of carbon black production

被引:5
|
作者
Rosner, Fabian [1 ,2 ]
Bhagde, Trisha [3 ]
Slaughter, Daniel S. [4 ]
Zorba, Vassilia [3 ,5 ]
Stokes-Draut, Jennifer [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, Renewable Energy & Chem Technol Lab, Los Angeles, CA 90095 USA
[3] Lawrence Berkeley Natl Lab, Laser Technol Grp, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Carbon black; Techno-economics; CO2; emissions; Efficiency; Tail gas utilization; Hydrogen;
D O I
10.1016/j.jclepro.2023.140224
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The over 15 million metric tonnes of carbon black produced annually emit carbon dioxide in the range of 29-79 million metric tonnes each year. With the renaissance of carbon black in many new renewable energy applications as well as the growing transportation sector, where carbon black is used as a rubber reinforcement agent in car tires, the carbon black market is expected to grow by 66% over the next 9 years. As such, it is important to better understand energy intensity and carbon dioxide emissions of carbon black production. In this work, the furnace black process is studied in detail using process models to provide insights into mass and energy balances, economics, and potential pathways for lowering the environmental impact of carbon black production. Current state-of-the-art carbon black facilities typically flare the tail gas of the carbon black reactor. While low in heating value, this tail gas contains considerable amounts of energy and flaring this tail gas leads to low overall efficiency (39.6%). The efficiency of the furnace black process can be improved if the tail gas is used to produce electricity. However, the high capital investment cost and increased operating costs make it difficult to operate electricity generation from the tail gas economically. Steam co-generation (together with electricity generation) on the other hand is shown to substantially improve energy efficiency as well as economics, provided that steam users are nearby. Steam co-generation can be achieved via back-pressure steam turbines so that the low-pressure exhaust steam (similar to 2 bar/120 degrees C) can be used locally for heating or drying purposes. Furthermore, the potential of utilizing hydrogen to reduce carbon dioxide emissions is investigated. Using hydrogen as fuel for the carbon black reactor instead of natural gas is shown to reduce the carbon dioxide footprint by 19%. However, current prices of hydrogen lead to a steep increase in the levelized cost of carbon black (47%).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Carbon dioxide capture from the Kraft mill limekiln: process and techno-economic analysis
    Amod Parkhi
    David Young
    Selen Cremaschi
    Zhihua Jiang
    Discover Chemical Engineering, 3 (1):
  • [42] Techno-economic and profitability analysis of extraction of patchouli oil using supercritical carbon dioxide
    Soh, Soon Hong
    Jain, Akshay
    Lee, Lai Yeng
    Chin, Siew Kian
    Yin, Chun-Yang
    Jayaraman, Sundaramurthy
    JOURNAL OF CLEANER PRODUCTION, 2021, 297
  • [43] INTEGRAL TECHNO-ECONOMIC ANALYSIS OF SUPERCRITICAL CARBON DIOXIDE CYCLES FOR CONCENTRATED SOLAR POWER
    Crespi, Francesco
    Sanchez, David
    Sanchez, Tomas
    Martinez, Gonzalo S.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 9, 2018,
  • [44] Carbon credit reduction: A techno-economic analysis of ?drop-in? fuel production
    Velvizhi, G.
    Nair, Rishika
    Goswami, Chandamita
    Arumugam, Senthil Kumar
    Shetti, Nagaraj P.
    Aminabhavi, Tejraj M.
    ENVIRONMENTAL POLLUTION, 2023, 316
  • [45] Techno-economic and multi objective optimization of zero carbon emission biomass based supercritical carbon dioxide oxy combustion system integrated with carbon dioxide liquefaction system and solid oxide electrolyzer
    Yang, Zhao
    Wu, JingChun
    Elmasry, Yasser
    Alanazi, Abdulaziz
    Armghan, Ammar
    Alanazi, Mohana
    Algelany, A. M.
    Wae-hayee, Makatar
    JOURNAL OF CO2 UTILIZATION, 2022, 64
  • [46] Life Cycle and Techno-Economic Assessment Templates for Emerging Carbon Management Technologies
    Faber, Grant
    Mangin, Christophe
    Sick, Volker
    FRONTIERS IN SUSTAINABILITY, 2021, 2
  • [47] Techno-economic assessment of carbon-negative algal biodiesel for transport solutions
    Taylor, Benjamin
    Xiao, Ning
    Sikorski, Janusz
    Yong, Minloon
    Harris, Tom
    Helme, Tim
    Smallbone, Andrew
    Bhave, Amit
    Kraft, Markus
    APPLIED ENERGY, 2013, 106 : 262 - 274
  • [48] Techno-economic analysis of integrated carbon capture and utilisation compared with carbon capture and utilisation with syngas production
    Qiao, Yuanting
    Liu, Weishan
    Guo, Ruonan
    Sun, Shuzhuang
    Zhang, Shuming
    Bailey, Josh J.
    Fang, Mengxiang
    Wu, Chunfei
    FUEL, 2023, 332
  • [49] Combined electrification and carbon capture for low-carbon cement: Techno-economic assessment of different designs
    Varnier, Leonardo
    d'Amore, Federico
    Clausen, Kim
    Melitos, Georgios
    de Groot, Bart
    Bezzo, Fabrizio
    JOURNAL OF CLEANER PRODUCTION, 2025, 498
  • [50] Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications
    Minke, Christine
    Kunz, Ulrich
    Turek, Thomas
    JOURNAL OF POWER SOURCES, 2017, 342 : 116 - 124