Techno-economic and carbon dioxide emission assessment of carbon black production

被引:5
|
作者
Rosner, Fabian [1 ,2 ]
Bhagde, Trisha [3 ]
Slaughter, Daniel S. [4 ]
Zorba, Vassilia [3 ,5 ]
Stokes-Draut, Jennifer [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, Renewable Energy & Chem Technol Lab, Los Angeles, CA 90095 USA
[3] Lawrence Berkeley Natl Lab, Laser Technol Grp, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Carbon black; Techno-economics; CO2; emissions; Efficiency; Tail gas utilization; Hydrogen;
D O I
10.1016/j.jclepro.2023.140224
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The over 15 million metric tonnes of carbon black produced annually emit carbon dioxide in the range of 29-79 million metric tonnes each year. With the renaissance of carbon black in many new renewable energy applications as well as the growing transportation sector, where carbon black is used as a rubber reinforcement agent in car tires, the carbon black market is expected to grow by 66% over the next 9 years. As such, it is important to better understand energy intensity and carbon dioxide emissions of carbon black production. In this work, the furnace black process is studied in detail using process models to provide insights into mass and energy balances, economics, and potential pathways for lowering the environmental impact of carbon black production. Current state-of-the-art carbon black facilities typically flare the tail gas of the carbon black reactor. While low in heating value, this tail gas contains considerable amounts of energy and flaring this tail gas leads to low overall efficiency (39.6%). The efficiency of the furnace black process can be improved if the tail gas is used to produce electricity. However, the high capital investment cost and increased operating costs make it difficult to operate electricity generation from the tail gas economically. Steam co-generation (together with electricity generation) on the other hand is shown to substantially improve energy efficiency as well as economics, provided that steam users are nearby. Steam co-generation can be achieved via back-pressure steam turbines so that the low-pressure exhaust steam (similar to 2 bar/120 degrees C) can be used locally for heating or drying purposes. Furthermore, the potential of utilizing hydrogen to reduce carbon dioxide emissions is investigated. Using hydrogen as fuel for the carbon black reactor instead of natural gas is shown to reduce the carbon dioxide footprint by 19%. However, current prices of hydrogen lead to a steep increase in the levelized cost of carbon black (47%).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Techno-economic assessment of microbial limonene production
    Sun, Chenhao
    Theodoropoulos, Constantinos
    Scrutton, Nigel S.
    BIORESOURCE TECHNOLOGY, 2020, 300
  • [32] A Techno-Economic Assessment Of Biofuels Production By Microalgae
    Marzocchella, A.
    Andreozzi, R.
    Bartalini, G.
    Filippone, E.
    Olivieri, G.
    Pinto, G.
    Salatino, P.
    IBIC2010: 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL BIOTECHNOLOGY, 2010, 20 : 169 - 174
  • [33] Techno-Economic Assessment of Nonfossil Ammonia Production
    Tuna, Per
    Hulteberg, Christian
    Ahlgren, Serina
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (04) : 1290 - 1297
  • [34] Techno-economic analysis of hydrogen production from dehydrogenation and steam reforming of ethanol for carbon dioxide conversion to methanol
    Khamhaeng, P.
    Laosiripojana, N.
    Assabumrungrat, S.
    Kim-Lohsoontorn, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (60) : 30891 - 30902
  • [35] Techno-economic assessment on a multi-stage compressed carbon dioxide energy storage system with liquid storage
    Ma, Haoyuan
    Liu, Zhan
    ENERGY REPORTS, 2022, 8 : 11740 - 11750
  • [36] Synthetic natural gas (SNG) production with higher carbon recovery from biomass: Techno-economic assessment
    Katla-Milewska, Daria
    Nazir, Shareq Mohd
    Skorek-Osikowska, Anna
    ENERGY CONVERSION AND MANAGEMENT, 2024, 300
  • [37] Techno-economic assessment of a carbon capture and utilization process for the production of plaster-like construction materials
    Galvez-Martos, Jose-Luis
    Elhoweris, Ammar
    Hakki, Amer
    Al-horr, Yousef
    JOURNAL OF CO2 UTILIZATION, 2020, 38 (38) : 59 - 67
  • [38] Life-cycle Carbon Footprint Assessment and Techno-economic Analysis of Integrated Energy Production Unit
    Yu Q.
    Zhang Y.
    Zhao Q.
    Sun L.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (08): : 3115 - 3124
  • [39] Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting
    Gaertner, Sebastian
    Marx-Schubach, Thomas
    Gaderer, Matthias
    Schmitz, Gerhard
    Sterner, Michael
    ENERGIES, 2023, 16 (05)
  • [40] Techno-economic insights and deployment prospects of permanent carbon dioxide sequestration in solid carbonates
    Muhlbauer, Andreas
    Keiner, Dominik
    Breyer, Christian
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (22) : 8756 - 8775