Study on Amorphous InGaZnO Thin-Film Transistor Modeling Method Based on Artificial Neural Network

被引:3
|
作者
Xie, Yingtao [1 ]
Cai, Kunlin [1 ]
Jian, Huan [1 ]
Huang, Yanlin [1 ]
Weng, Jiaming [2 ]
Wang, Wei [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Elect Engn, Chongqing 400065, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Thin film transistors; Neural networks; Predictive models; Performance evaluation; Radio frequency; Integrated circuit modeling; Optimization; a-IGZO TFT; density-of-states; reverse design neural network; radio-frequency power; PERFORMANCE; PASSIVATION;
D O I
10.1109/JEDS.2023.3294439
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, two approaches of forward design neural network and reverse design neural network were proposed to accelerate the design of passivation-layer structured amorphous indium gallium zinc oxide thin-film transistor (a-IGZO TFT). It was based on a neural network with the back-propagation neural network (BPNN) and general regression neural network (GRNN) as general approximators. The forward design neural network utilized the density-of-states (DOS) key parameters of a-IGZO film as input signals, and could quickly predict characteristic curves with high accuracy. The forward design effectively improved the problem of complex input/output layer parameters in the existing methods, which was significant for the prediction and optimization of a-IGZO TFT device performance. And the reverse design neural network adopts the DOS key parameters of a-IGZO film as the output signal to achieve the rapid prediction of DOS parameters of a-IGZO film. The inverse design effectively compensated the drawback that a-IGZO TFT required artificial tuning of DOS key parameters to achieve characteristic curve fitting. All in all, the neural network model can effectively determine whether the output parameters of the network meet the design objectives and whether the output parameters need to be changed by adjusting the input parameters to eventually achieve the performance prediction and material parameters optimization of a-IGZO TFT.
引用
收藏
页码:717 / 725
页数:9
相关论文
共 50 条
  • [21] Oxygen Adsorption Effect of Amorphous InGaZnO Thin-Film Transistors
    Zhou, Xiaoliang
    Shao, Yang
    Zhang, Letao
    Xiao, Xiang
    Han, Dedong
    Wang, Yi
    Zhang, Shengdong
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (04) : 465 - 468
  • [22] A Solution Processed Amorphous InGaZnO Thin-Film Transistor-Based Dosimeter for Gamma-Ray Detection and Its Reliability
    Zalte, Maruti B.
    Kumar, Virendra
    Surya, Sandeep G.
    Baghini, Maryam Shojaei
    IEEE SENSORS JOURNAL, 2021, 21 (09) : 10667 - 10674
  • [23] Unique property of a-InGaZnO/Ag Interface on Thin-Film Transistor
    Ueoka, Yoshihiro
    Ishikawa, Yasuaki
    Bermundo, Juan Paolo
    Yamazaki, Haruka
    Urakawa, Satoshi
    Osada, Yukihiro
    Horita, Masahiro
    Uraoka, Yukiharu
    PROCEEDINGS OF 2013 TWENTIETH INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD 13): TFT TECHNOLOGIES AND FPD MATERIALS, 2013, : 37 - 38
  • [25] Extraction of Propagation Delay-Correlated Mobility and Its Verification for Amorphous InGaZnO Thin-Film Transistor-Based Inverters
    Lee, Kyung Min
    Jang, Jaeman
    Choi, Sung-Jin
    Kim, Dong Myong
    Kim, Kyung Rok
    Kim, Dae Hwan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (05) : 1504 - 1510
  • [26] Charge-Coupling Extended-Gate Amorphous-InGaZnO-Based Thin-Film Transistor for Use as Ultrasensitive Biosensor
    Ito, Kensuke
    Nishimura, Kotaro
    Ikeda, Keiji
    Matsuzawa, Kazuya
    Tezuka, Tsutomu
    Sakata, Toshiya
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (13) : B571 - B575
  • [27] Improved Characteristics of InGaZnO Thin-Film Transistor by Using Fluorine Implant
    Qian, L. X.
    Tang, W. M.
    Lai, P. T.
    ECS SOLID STATE LETTERS, 2014, 3 (08) : P87 - P90
  • [28] Fabrication and Charge Transport Modeling of Thin-Film Transistor Based on Carbon Nanotubes Network
    Lamberti, Patrizia
    Mousavi, Sayed Alireza
    Spinelli, Giovanni
    Tucci, Vincenzo
    Wagner, Veit
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (04) : 795 - 804
  • [29] High Memory Window, Dual-Gate Amorphous InGaZnO Thin-Film Transistor with Ferroelectric Gate Insulator
    Roy, Samiran
    Islam, Md Mobaidul
    Ali, Arqum
    Saha, Jewel Kumer
    Lee, Heonbang
    Tooshil, Abul
    Jang, Jin
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2024,
  • [30] Physical Insights Into the Mobility Enhancement in Amorphous InGaZnO Thin-Film Transistor by SiO2 Passivation Layer
    Zhang, Panpan
    Samanta, Subhranu
    Fong, Xuanyao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (06) : 2352 - 2358