Unveiling complexity: Exploring chaos and solitons in modified nonlinear Schrödinger equation

被引:5
|
作者
Wang, Pengfei [1 ]
Yin, Feng [1 ]
Rahman, Mati ur [2 ,3 ]
Khan, Meraj Ali [4 ]
Baleanu, Dumitru [3 ]
机构
[1] Xinzhou Normal Univ, Math Dept, Xinzhou 034000, Shanxi, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Angola
关键词
Schrodinger equation; Galilean transformation; Bifurcation;
D O I
10.1016/j.rinp.2023.107268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study delves deep into the complexities of the modified nonlinear Schrodinger equation. Through the Galilean transformation, we derive a dynamic system linked to the equation. Using planar dynamical systems theory, we investigate bifurcation phenomena and introduce perturbations to reveal chaotic behaviors. Phase portraits offer visual insights, while sensitivity analysis using the Runge-Kutta method emphasizes solution stability against initial condition variations. Leveraging the planar dynamical system method, we generate diverse solitons, including periodic, bright, and dark solitons. This work enhances our grasp of intricate dynamics and their broader implications.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [42] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [43] Modified scattering for a dispersion-managed nonlinear Schrödinger equation
    Jason Murphy
    Tim Van Hoose
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [44] Maximal Amplitudes of Hyperelliptic Solutions of the Modified Nonlinear Schrödinger Equation
    Wright III, Otis C.
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (05)
  • [45] Formation of solitons with shape changing for a generalized nonlinear Schrödinger equation in an optical fiber
    Muniyappan, A.
    Parasuraman, E.
    Seadawy, Aly R.
    Ramkumar, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [46] Optical solitons for the decoupled nonlinear Schr?dinger equation using Jacobi elliptic approach
    Jamilu Sabi'u
    Eric Tala-Tebue
    Hadi Rezazadeh
    Saima Arshed
    Ahmet Bekir
    CommunicationsinTheoreticalPhysics, 2021, 73 (07) : 21 - 28
  • [47] Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach
    Nan Liu
    Boling Guo
    Nonlinear Dynamics, 2020, 100 : 629 - 646
  • [48] Formation of solitons with shape changing for a generalized nonlinear Schrödinger equation in an optical fiber
    A. Muniyappan
    E. Parasuraman
    Aly R. Seadawy
    S. Ramkumar
    Optical and Quantum Electronics, 2024, 56
  • [49] Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation
    Yue-Yue Wang
    Chao-Qing Dai
    Yi-Qing Xu
    Jun Zheng
    Yan Fan
    Nonlinear Dynamics, 2018, 92 : 1261 - 1269
  • [50] Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation
    Karpman, V.I.
    Rasmussen, J.J.
    Shagalov, A.G.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 266141 - 266141